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Introduction

Tools of causal inference are the basic statistical building block behind most
scientific results. It is thus extremely useful to have an open source collectively
aggreed upon resource presenting and assessing them, as well as listing the
current unresolved issues. The content of this book covers the basic theoretical
knowledge and technical skills required for implementing staistical methods of
causal inference. This means:

• Understanding of the basic language to encode causality,
• Knowledge of the fundamental problems of inference and the biases of

intuitive estimators,
• Understanding of how econometric methods recover treatment effects,
• Ability to compute these estimators along with an estimate of their precision

using the statistical software R.

This book is geared for teaching causal inference to graduate students that want
to apply statistical tools of causal inference. The demonstration of theoretical
results are provided, but the final goal is not to have students reproduce them,
but mostly to enable them to grasp a better understanding of the fundations for
the tools that they will be using. The focus is on understanding the issues and
solutions more than understanding the maths that are behind, even though the
maths are there and are used to convey the notions rigorously. All the notions
and estimators are introduced using a numerical example and simulations, so
that each notion is illustrated and appears more intuitive to the students. The
second version of this book will contain examples using real applications. The
third version will contain exercises.

This book is written in Rmarkdown using the bookdown package. It is available
both as a web-book and as a pdf book.

This book is a collaborative effort that is part of the Social Science Knowledge
Accumulation Initiative (SKY). The code behind this book is publically avail-
able on GitHub and you can propose corrections and updates. How to make
contributions to this book is explained on the SKY website. Do not hesitate to
make suggestions, modifications and extensions. This way this book will grow
and become the living open source collaborative reference for methodological
work that it could be.
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Introduction: the Two
Fundamental Problems of
Inference

When trying to estimate the effect of a program on an outcome, we face two very
important and difficult problems: the Fundamental Problem of Causal Inference
(FPCI) and the Fundamental Problem of Statistical Inference (FPSI).

In its most basic form, the FPCI states that our causal parameter of interest (TT ,
short for Treatment on the Treated, that we will define shortly) is fundamentally
unobservable, even when the sample size is infinite. The main reason for that is
that one component of TT , the outcome of the treated had they not received
the program, remains unobservable. We call this outcome a counterfactual
outcome. The FPCI is a very dispiriting result, and is actually the basis for
all of the statistical methods of causal inference. All of these methods try to
find ways to estimate the counterfactual by using observable quantities that
hopefully approximate it as well as possible. Most people, including us but
also policymakers, generally rely on intuitive quantities in order to generate the
counterfactual (the individuals without the program or the individuals before the
program was implemented). Unfortunately, these approximations are generally
very crude, and the resulting estimators of TT are generally biased, sometimes
severely.

The Fundamental Problem of Statistical Inference (FPSI) states that, even if we
have an estimator E that identifies TT in the population, we cannot observe E
because we only have access to a finite sample of the population. The only thing
that we can form from the sample is a sample equivalent Ê to the population
quantity E, and Ê 6= E. Why is Ê 6= E? Because a finite sample is never
perfectly representative of the population. What can we do to deal with the
FPSI? I am going to argue that there are mainly two things that we might want
to do: estimating the extent of sampling noise and decreasing sampling noise.
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Chapter 1

Fundamental Problem of
Causal Inference

In order to state the FPCI, we are going to describe the basic language to encode
causality set up by Rubin, and named Rubin Causal Model (RCM). RCM being
about partly observed random variables, it is hard to make these notions concrete
with real data. That’s why we are going to use simulations from a simple model
in order to make it clear how these variables are generated. The second virtue
of this model is that it is going to make it clear the source of selection into the
treatment. This is going to be useful when understanding biases of intuitive
comparisons, but also to discuss the methods of causal inference. A third virtue
of this approach is that it makes clear the connexion between the treatment
effects literature and models. Finally, a fourth reason that it is useful is that it
is going to give us a source of sampling variation that we are going to use to
visualize and explore the properties of our estimators.

I use Xi to denote random variable X all along the notes. I assume that we
have access to a sample of N observations indexed by i ∈ {1, . . . , N}. ’‘i” will
denote the basic sampling units when we are in a sample, and a basic element
of the probability space when we are in populations. Introducing rigorous
measure-theoretic notations for the population is feasible but is not necessary
for comprehension.

When the sample size is infinite, we say that we have a population. A population
is a very useful fiction for two reasons. First, in a population, there is no sampling
noise: we observe an infinite amount of observations, and our estimators are
infinitely precise. This is useful to study phenomena independently of sampling
noise. For example, it is in general easier to prove that an estimator is equal to
TT under some conditions in the population. Second, we are most of the time
much more interested in estimating the values of parameters in the population
rather than in the sample. The population parameter, independent of sampling
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noise, gives a much better idea of the causal parameter for the population of
interest than the parameter in the sample. In general, the estimator for both
quantities will be the same, but the estimators for the effetc of sampling noise
on these estimators will differ. Sampling noise for the population parameter will
generally be larger, since it is affected by another source of variability (sample
choice).

1.1 Rubin Causal Model
RCM is made of three distinct building blocks: a treatment allocation rule, that
decides who receives the treatment; potential outcomes, that measure how each
individual reacts to the treatment; the switching equation that relates potential
outcomes to observed outcomes through the allocation rule.

1.1.1 Treatment allocation rule
The first building block of RCM is the treatment allocation rule. Throughout
this class, we are going to be interested in inferring the causal effect of only
one treatment with respect to a control condition. Extensions to multi-valued
treatments are in general self-explanatory.

In RCM, treatment allocation is captured by the variable Di. Di = 1 if unit i
receives the treatment and Di = 0 if unit i does not receive the treatment and
thus remains in the control condition.

The treatment allocation rule is critical for several reasons. First, because it
switches the treatment on or off for each unit, it is going to be at the source of
the FPCI. Second, the specific properties of the treatment allocatoin rule are
going to matter for the feasibility and bias of the various econometric methods
that we are going to study.

Let’s take a few examples of allocation rules. These allocation rules are just
examples. They do not cover the space of all possible allocation rules. They are
especially useful as concrete devices to understand the sources of biases and the
nature of the allocation rule. In reality, there exists even more complex alloca-
tion rules (awareness, eligibility, application, acceptance, active participation).
Awareness seems especially important for program participation and has only
been tackled recently by economists.

First, some notation. Let’s imagine a treatment that is given to individuals.
Whether each individual receives the treatment partly depends on the level of
her outcome before receiving the treatment. Let’s denote this variable Y Bi , with
B standing for “Before”. It can be the health status assessed by a professional
before deciding to give a drug to a patient. It can be the poverty level of a
household used to assess its eligibilty to a cash transfer program.
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1.1.1.1 Sharp cutoff rule

The sharp cutoff rule means that everyone below some threshold Ȳ is going to
receive the treatment. Everyone whose outcome before the treatment lies above
Ȳ does not receive the treatment. Such rules can be found in reality in a lot of
situations. They might be generated by administrative rules. One very simple
way to model this rule is as follows:

Di = 1[Y Bi ≤ Ȳ ], (1.1)

where 1[A] is the indicator function, taking value 1 when A is true and 0
otherwise.

Example 1.1 (Sharp cutoff rule). Imagine that Y Bi = exp(yBi ), with yBi =
µi + UBi , µi ∼ N (µ̄, σ2

µ) and UBi ∼ N (0, σ2
U ). Now, let’s choose some values for

these parameters so that we can generate a sample of individuals and allocate
the treatment among them. I’m going to switch to R for that.
param <- c(8,.5,.28,1500)
names(param) <- c("barmu","sigma2mu","sigma2U","barY")
param

## barmu sigma2mu sigma2U barY
## 8.00 0.50 0.28 1500.00

Now, I have choosen values for the parameters in my model. For example, µ̄ =
8 and Ȳ = 1500. What remains to be done is to generate Y Bi and then Di. For
this, I have to choose a sample size (N = 1000) and then generate the shocks
from a normal.
# for reproducibility, I choose a seed that will give me the same random sample each time I run the program
set.seed(1234)
N <-1000
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- ifelse(YB<=param["barY"],1,0)

Let’s now build a histogram of the data that we have just generated.
# building histogram of yB with cutoff point at ybar
# Number of steps
Nsteps.1 <- 15
#step width
step.1 <- (log(param["barY"])-min(yB[Ds==1]))/Nsteps.1
Nsteps.0 <- (-log(param["barY"])+max(yB[Ds==0]))/step.1
breaks <- cumsum(c(min(yB[Ds==1]),c(rep(step.1,Nsteps.1+Nsteps.0+1))))
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Table 1.1: Treatment allocation with sharp cutoff rule

0 771
1 229

hist(yB,breaks=breaks,main="")
abline(v=log(param["barY"]),col="red")
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Figure 1.1: Histogram of yB

You can see on Figure 1.1 a histogram of yBi with the red line indicating the
cutoff point: ȳ = ln(Ȳ ) = 7.3. All the observations below the red line are treated
according to the sharp rule while all the one located above are not. In order to
see how many observations eventually receive the treatment with this allocation
rule, let’s build a contingency table.
table.D.sharp <- as.matrix(table(Ds))
knitr::kable(table.D.sharp,caption='Treatment allocation with sharp cutoff rule',booktabs=TRUE)

We can see on Table 1.1 that there are 229 treated observations.

1.1.1.2 Fuzzy cutoff rule

This rule is less sharp than the sharp cutoff rule. Here, other criteria than Y Bi
enter into the decision to allocate the treatment. The doctor might measure
the health status of a patient following official guidelines, but he might also
measure other factors that will also influence his decision of giving the drug to
the patient. The officials administering a program might measure the official
income level of a household, but they might also consider other features of the
household situation when deciding to enroll the household into the program or
not. If these additional criteria are unobserved to the econometrician, then we
have the fuzzy cutoff rule. A very simple way to model this rule is as follows:
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Di = 1[Y Bi + Vi ≤ Ȳ ], (1.2)

where Vi is a random variable unobserved to the econometrician and standing
for the other influences that might drive the allocation of the treatment. Vi is
distributed according to a, for the moment, unspecified cumulative distribution
function FV . When Vi is degenerate (i.e. it has only one point of support: it is
a constant), the fuzzy cutoff rule becomes the sharp cutoff rule.

1.1.1.3 Eligibility + self-selection rule

It is also possible that households, once they have been made eligible to the
treatment, can decide whether they want to receive it or not. A patient might
be able to refuse the drug that the doctor suggests she should take. A household
might refuse to participate in a cash transfer program to which it has been
made eligible. Not all programs have this feature, but most of them have some
room for decisions by the agents themselves of whether they want to receive the
treatment or not. One simple way to model this rule is as follows:

Di = 1[D∗i ≥ 0]Ei, (1.3)

where D∗i is individual i’s valuation of the treatment and Ei is whether or not
she is deemed eligible for the treatment. Ei might be choosen according to the
sharp cutoff rule of to the fuzzy cutoff rule, or to any other eligibility rule. We
will be more explicit about D∗i in what follows.

SIMULATIONS ARE MISSING FOR THESE LAST TWO RULES

1.1.2 Potential outcomes
The second main building block of RCM are potential outcomes. Let’s say that
we are interested in the effect of a treatment on an outcome Y . Each unit i can
thus be in two potential states: treated or non treated. Before the allocation of
the treatment is decided, both of these states are feasible for each unit.

Definition 1.1 (Potential outcomes). For each unit i, we define two potential
outcomes:

• Y 1
i : the outcome that unit i is going to have if it receives the treatment,

• Y 0
i : the outcome that unit i is going to have if it does not receive the

treatment.

Example 1.2. Let’s choose functional forms for our potential outcomes. For
simplicity, all lower case letters will denote log outcomes. y0

i = µi + δ + U0
i ,

with δ a time shock common to all the observations and U0
i = ρUBi + εi, with

|ρ| < 1. In the absence of the treatment, part of the shocks UBi that the
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individuals experienced in the previous period persist, while some part vanish.
y1
i = y0

i + ᾱ + θµi + ηi. In order to generate the potential outcomes, one has
to define the laws for the shocks and to choose parameter values. Let’s assume
that εi ∼ N (0, σ2

ε ) and ηi ∼ N (0, σ2
η). Now let’s choose some parameter values:

l <- length(param)
param <- c(param,0.9,0.01,0.05,0.05,0.05,0.1)
names(param)[(l+1):length(param)] <- c("rho","theta","sigma2epsilon","sigma2eta","delta","baralpha")
param

## barmu sigma2mu sigma2U barY rho
## 8.00 0.50 0.28 1500.00 0.90
## theta sigma2epsilon sigma2eta delta baralpha
## 0.01 0.05 0.05 0.05 0.10

We can finally generate the potential outcomes;
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)

Now, I would like to visualize my potential outcomes:
plot(y0,y1)
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Figure 1.2: Potential outcomes

You can see on the resulting Figure 1.2 that both potential outcomes are positively
correlated. Those with a large potential outcome when untreated (e.g. in good
health without the treatment) also have a positive health with the treatment.
It is also true that individuals with bad health in the absence of the treatment
also have bad health with the treatment.
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1.1.3 Switching equation
The last building block of RCM is the switching equation. It links the observed
outcome to the potential outcomes through the allocation rule:

Yi =
{
Y 1
i if Di = 1
Y 0
i if Di = 0

(1.4)

= Y 1
i Di + Y 0

i (1−Di)

Example 1.3. In order to generate observed outcomes in our numerical example,
we simply have to enforce the switching equation:
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)

What the switching equation (1.4) means is that, for each individual i, we get
to observe only one of the two potential outcomes. When individual i belongs
to the treatment group (i.e. Di = 1), we get to observe Y 1

i . When individual i
belongs to the control group (i.e. Di = 0), we get to observe Y 0

i . Because the
same individual cannot be at the same time in both groups, we can NEVER see
both potential outcomes for the same individual at the same time.

For each of the individuals, one of the two potential outcomes is unobserved. We
say that it is a counterfactual. A counterfactual quantity is a quantity that is,
according to Hume’s definition, contrary to the observed facts. A counterfactual
cannot be observed, but it can be conceived by an effort of reason: it is the
consequence of what would have happened had some action not been taken.

Remark. One very nice way of visualising the switching equation has been
proposed by Jerzy Neyman in a 1923 prescient paper. Neyman proposes to
imagine two urns, each one filled with N balls. One urn is the treatment urn
and contains balls with the id of the unit and the value of its potential outcome
Y 1
i . The other urn is the control urn, and it contains balls with the value of

the potential outcome Y 0
i for each unit i. Following the allocation rule Di, we

decide whether unit i is in the treatment or control group. When unit i is in the
treatment group, we take the corresponding ball from the first urn and observe
the potential outcome on it. But, at the same time, the urns are connected so
that the corresponding ball with the potential outcome of unit i in the control
urn disappears as soon as we draw ball i from the treatment urn.

The switching equation works a lot like Schrodinger’s cat paradox. Schrodinger’s
cat is placed in a sealed box and receives a dose of poison when an atom emits a
radiation. As long as the box is sealed, there is no way we can know whether
the cat is dead or alive. When we open the box, we observe either a dead cat
or a living cat, but we cannot observe the cat both alive and dead at the same
time. The switching equation is like opening the box, it collapses the observed
outcome into one of the two potential ones.
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Example 1.4. One way to visualize the inner workings of the switching equation
is to plot the potential outcomes along with the criteria driving the allocation
rule. In our simple example, it simply amounts to plotting observed (yi) and
potential outcomes (y1

i and y0
i ) along yBi .

plot(yB[Ds==0],y0[Ds==0],pch=1,xlim=c(5,11),ylim=c(5,11),xlab="yB",ylab="Outcomes")
points(yB[Ds==1],y1[Ds==1],pch=3)
points(yB[Ds==0],y1[Ds==0],pch=3,col='red')
points(yB[Ds==1],y0[Ds==1],pch=1,col='red')
test <- 5.8
i.test <- which(abs(yB-test)==min(abs(yB-test)))
points(yB[abs(yB-test)==min(abs(yB-test))],y1[abs(yB-test)==min(abs(yB-test))],col='green',pch=3)
points(yB[abs(yB-test)==min(abs(yB-test))],y0[abs(yB-test)==min(abs(yB-test))],col='green')
abline(v=log(param["barY"]),col="red")
legend(5,11,c('y0|D=0','y1|D=1','y0|D=1','y1|D=0',paste('y0',i.test,sep=''),paste('y1',i.test,sep='')),pch=c(1,3,1,3,1,3),col=c('black','black','red','red','green','green'),ncol=3)
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Figure 1.3: Potential outcomes

plot(yB[Ds==0],y0[Ds==0],pch=1,xlim=c(5,11),ylim=c(5,11),xlab="yB",ylab="Outcomes")
points(yB[Ds==1],y1[Ds==1],pch=3)
legend(5,11,c('y|D=0','y|D=1'),pch=c(1,3))
abline(v=log(param["barY"]),col="red")

5 6 7 8 9 10 11

5
6

7
8

9
10

11

yB

O
ut

co
m

es

y|D=0
y|D=1

Figure 1.4: Observed outcomes
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Figure 1.3 plots the observed outcomes yi along with the unobserved potential
outcomes. Figure 1.3 shows that each individual in the sample is endowed with
two potential outcomes, represented by a circle and a cross. Figure 1.4 plots
the observed outcomes yi that results from applying the switching equation.
Only one of the two potential outcomes is observed (the cross for the treated
group and the circle for the untreated group) and the other is not. The observed
sample in Figure 1.4 only shows observed outcomes, and is thus silent on the
values of the missing potential outcomes.

1.2 Treatment effects
RCM enables the definition of causal effects at the individual level. In practice
though, we generally focus on a summary measure: the effect of the treatment
on the treated.

1.2.1 Individual level treatment effects
Potential outcomes enable us to define the central notion of causal inference: the
causal effect, also labelled the treatment effect, which is the difference between
the two potential outcomes.

Definition 1.2 (Individual level treatment effect). For each unit i, the causal
effect of the treatment on outcome Y is: ∆Y

i = Y 1
i − Y 0

i .

Example 1.5. The individual level causal effect in log terms is: ∆y
i = αi =

ᾱ + θµi + ηi. The effect is the sum of a part common to all individuals, a
part correlated with µi: the treatment might have a larger or a smaller effect
depending on the unobserved permanent ability or health status of individuals,
and a random shock. It is possible to make the effect of the treatment to depend
on UBi also, but it would complicate the model.

In Figure 1.3, the individual level treatment effects are the differences between
each cross and its corresponding circle. For example, for observation 264, the two
potential outcomes appear in green in Figure 1.3. The effect of the treatment on
unit 264 is equal to:

∆y
264 = y1

264 − y0
264 = 6.98− 6.64 = 0.34.

Since observation 264 belongs to the treatment group, we can only observe the
potential outcome in the presence of the treatment, y1

264.

RCM allows for heterogeneity of treatment effects. The treatment has a large
effect on some units and a much smaller effect on other units. We can even have
some units that benefit from the treatment and some units that are harmed by
the treatment. The individual level effect of the treatment is itself a random
variable (and not a fixed parameter). It has a distribution, F∆Y .
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Heterogeneity of treatment effects seems very natural: the treatment might
interact with individuals’ different backgrounds. The effect of a drug might
depend on the genetic background of an individual. An education program might
only work for children that already have sufficient non-cognitive skills, and thus
might depend in turn on family background. An environmental regulation or a
behavioral intervention might only trigger reactions by already environmentally
aware individuals. A CCT might have a larger effect when indiviuals are credit-
constrained or face shocks.

Example 1.6. In our numerical example, the distribution of ∆y
i = αi is a

normal: αi ∼ N (ᾱ+ θµ̄, θ2σ2
µ + σ2

η). We would like to visualize treatment effect
heterogeneity. For that, we can build a histogram of the individual level causal
effect.

On top of the histogram, we can also draw the theoretical distribution of the
treatment effect: a normal with mean 0.18 and variance 0.05.
hist(alpha,main="",prob=TRUE)
curve(dnorm(x, mean=(param["baralpha"]+param["theta"]*param["barmu"]), sd=sqrt(param["theta"]ˆ2*param["sigma2mu"]+param["sigma2eta"])), add=TRUE,col='red')

alpha

D
en

si
ty

−0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

Figure 1.5: Histogram of ∆y

The first thing that we can see on Figure 1.5 is that the theoretical and the
empirical distributions nicely align with each other. We also see that the majority
of the observations lies to the right of zero: most people experience a positive
effect of the treatment. But there are some individuals that do not benefit from
the treatment: the effect of the treatment on them is negative.

1.2.2 Average treatment effect on the treated
We do not generally estimate individual-level treatment effects. We generally
look for summary statistics of the effect of the treatment. By far the most widely
reported causal parameter is the Treatment on the Treated parameter (TT). It
can be defined in the sample at hand or in the population.

Definition 1.3 (Average and expected treatment effects on the treated). The
Treatment on the Treated parameters for outcome Y are:
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• The average Treatment effect on the Treated in the sample:

∆Y
TTs = 1∑N

i=1Di

N∑
i=1

(Y 1
i − Y 0

i )Di,

• The expected Treatment effect on the Treated in the population:

∆Y
TT = E[Y 1

i − Y 0
i |Di = 1].

The TT parameters measure the average effect of the treatment on those who
actually take it, either in the sample at hand or in the popluation. It is generally
considered to be the most policy-relevant parameter since it measures the effect of
the treatment as it has actually been allocated. For example, the expected causal
effect on the overall population is only relevant if policymakers are considering
implementing the treatment even on those who have not been selected to receive
it. For a drug or an anti-poverty program, it would mean giving the treatment
to healthy or rich people, which would make little sense.

TT does not say anything about how the effect of the treatment is distributed
in the population or in the sample. TT does not account for the heterogneity of
treatment effects. In Lecture 7, we will look at other parameters of interest that
look more closely into how the effect of the treatment is distributed.

Example 1.7. The value of TT in our sample is:

∆y
TTs

= 0.168.

Computing the population value of TT is slightly more involved: we have to
use the formula for the conditional expectation of a censored bivariate normal
random variable:

∆y
TT = E[αi|Di = 1]

= ᾱ+ θE[µi|µi + UBi ≤ ȳ]

= ᾱ+ θ

µ̄− σ2
µ√

σ2
µ + σ2

U

φ

(
ȳ−µ̄√
σ2
µ+σ2

U

)
Φ
(

ȳ−µ̄√
σ2
µ+σ2

U

)


= ᾱ+ θµ̄− θ

 σ2
µ√

σ2
µ + σ2

U

φ

(
ȳ−µ̄√
σ2
µ+σ2

U

)
Φ
(

ȳ−µ̄√
σ2
µ+σ2

U

)
 ,
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where φ and Φ are respectively the density and the cumulative distribution
functions of the standard normal. The second equality follows from the definition
of αi and Di and from the fact that ηi is independent from µi and UBi . The
third equality comes from the formula for the expectation of a censored bivariate
normal random variable. In order to compute the population value of TT easily
for different sets of parameter values, let’s write a function in R:
delta.y.tt <- function(param){return(param["baralpha"]+param["theta"]*param["barmu"]

-param["theta"]*((param["sigma2mu"]*dnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"]))))
/(sqrt(param["sigma2mu"]+param["sigma2U"])
*pnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"]))))))}

The population value of TT computed using this function is: ∆y
TT = 0.172. We

can see that the values of TT in the sample and in the population differ slightly.
This is because of sampling noise: the units in the sample are not perfectly
representative of the units in the population.

1.3 Fundamental problem of causal inference
At least in this lecture, causal inference is about trying to infer TT, either in the
sample or in the population. The FPCI states that it is impossible to directly
observe TT because one part of it remains fundamentally unobserved.

Theorem 1.1 (Fundamental problem of causal inference). It is impossible to
observe TT, either in the population or in the sample.

Proof. The proof of the FPCI is rather straightforward. Let me start with the
sample TT:

∆Y
TTs = 1∑N

i=1Di

N∑
i=1

(Y 1
i − Y 0

i )Di

= 1∑N
i=1Di

N∑
i=1

Y 1
i Di −

1∑N
i=1Di

N∑
i=1

Y 0
i Di

= 1∑N
i=1Di

N∑
i=1

YiDi −
1∑N

i=1Di

N∑
i=1

Y 0
i Di.

Since Y 0
i is unobserved whenever Di = 1, 1∑N

i=1
Di

∑N
i=1 Y

0
i Di is unobserved,

and so is ∆Y
TTs

. The same is true for the population TT:
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∆Y
TT = E[Y 1

i − Y 0
i |Di = 1]

= E[Y 1
i |Di = 1]− E[Y 0

i |Di = 1]
= E[Yi|Di = 1]− E[Y 0

i |Di = 1].

E[Y 0
i |Di = 1] is unobserved, and so is ∆Y

TT .

The key insight in order to understand the FPCI is to see that the outcomes of
the treated units had they not been treated are unobservable, and so is their
average or expectation. We say that they are counterfactual, contrary to what
has happened.

Definition 1.4 (Couterfactual). Both 1∑N

i=1
Di

∑N
i=1 Y

0
i Di and E[Y 0

i |Di = 1]

are counterfactual quantities that we will never get to observe.

Example 1.8. The average counterfactual outcome of the treated is the mean
of the red circles in the y axis on Figure 1.3:

1∑N
i=1Di

N∑
i=1

y0
iDi = 6.91.

Remember that we can estimate this quantity only because we have generated
the data ourselves. In real life, this quantity is hopelessly unobserved.

E[y0
i |Di = 1] can be computed using the formula for the expectation of a censored

normal random variable:

E[y0
i |Di = 1] = E[µi + δ + U0

i |Di = 1]
= E[µi + δ + ρUBi + εi|Di = 1]
= δ + E[µi + ρUBi |yBi ≤ ȳ]

= δ + µ̄−
σ2
µ + ρσ2

U√
σ2
µ + σ2

U

φ

(
ȳ−µ̄√
σ2
µ+σ2

U

)
Φ
(

ȳ−µ̄√
σ2
µ+σ2

U

) .

We can write a function in R to compute this value:
esp.y0.D1 <- function(param){

return(param["delta"]+param["barmu"]
-((param["sigma2mu"]+param["rho"]*param["sigma2U"])
*dnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"]))))

/(sqrt(param["sigma2mu"]+param["sigma2U"])*pnorm((log(param["barY"])-param["barmu"])
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/(sqrt(param["sigma2mu"]+param["sigma2U"])))))
}

The population value of TT computed using this function is: E[y0
i |Di = 1] = 6.9.

1.4 Intuitive estimators, confounding factors
and selection bias

In this section, we are going to examine the properties of two intuitive comparisons
that laypeople, policymakers but also ourselves make in order to estimate causal
effects: the with/wihtout comparison (WW ) and the before/after comparison
(BA). WW compares the average outcomes of the treated individuals with
those of the untreated individuals. BA compares the average outcomes of the
treated after taking the treatment to their average outcomes before they took
the treatment. These comparisons try to proxy for the expected counterfactual
outcome in the treated group by using an observed quantity. WW uses the
expected outcome of the untreated individuals as a proxy. BA uses the expected
outcome of the treated before they take the treatment as a proxy.

Unfortunately, both of these proxies are generally poor and provide biased
estimates of TT . The reason that these proxies are poor is that the treatment is
not the only factor that differentiates the treated group from the groups used
to form the proxy. The intuitive comparisons are biased because factors, other
than the treatment, are correlated to its allocation. The factors that bias the
intuitive comparisons are generally called confouding factors or confounders.

The treatment effect measures the effect of a ceteris paribus change in treatment
status, while the intuitive comparisons capture both the effect of this change and
that of other correlated changes that spuriously contaminate the comparison.
Intuitive comparisons measure correlations while treatment effects measure
causality. The old motto “correlation is not causation” applies vehemently here.

Remark. A funny anecdote about this expression “correlation is not causation”.
This expression is due to Karl Pearson, the father of modern statistics. He coined
the phrase in his famous book “The Grammar of Science.” Pearson is famous
for inventing the correlation coefficient. He actually thought that correlation
was a much superior, much more rigorous term, than causation. In his book, he
actually used the sentence to argue in favor of abandoning causation altogether
and focusing on the much better-defined and measurable concept of correlation.
Interesting turn of events that his sentence is now used to mean that correlation
is weaker than causation, totally reverting the original intended meaning.

In this section, we are going to define both comparisons, study their biases and
state the conditions under which they identify TT . This will prove to be a very
useful introduction to the notion of identification. It is also very important to
be able to understand the sources of bias of comparisons that we use every day
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and that come very naturally to policy makers and lay people.

Remark. In this section, we state the definitions and formulae in the population.
This is for two reasons. First, it is simpler, and lighter in terms of notation. Sec-
ond, it emphasizes that the problems with intuitive comparisons are independent
of sampling noise. Most of the results stated here for the population extend to
the sample, replacing the expectation operator by the average operator. I will
nevertheless give examples in the sample, since it is so much simpler to compute.
I will denote sample equivalents of population estimators with a hat.

1.4.1 With/Without comparison, selection bias and cross-
sectional confounders

The with/without comparison (WW ) is very intuitive: just compare the outcomes
of the treated and untreated individuals in order to estimate the causal effect.
This approach is nevertheless generally biased. We call the bias of WW selection
bias (SB). Selection bias is due to unobserved confounders that are distributed
differently in the treatment and control group and that generate differences in
outcomes even in the absence of the treatment. In this section, I define the WW
estimator, derives its bias, introduces the confounders and states conditions
under which it is unbiased.

1.4.1.1 With/Without comparison

The with/without comparison (WW ) is very intuitive: just compare the outcomes
of the treated and untreated individuals in order to estimate the causal effect.

Definition 1.5 (With/without comparison). The with/without comparison is
the difference between the expected outcomes of the treated and the expected
outcomes of the untreated:

∆Y
WW = E[Yi|Di = 1]− E[Yi|Di = 0].

Example 1.9. In the population, WW can be computed using the traditional
formula for the expectation of a truncated normal distribution:

∆y
WW = E[yi|Di = 1]− E[yi|Di = 0]

= E[y1
i |Di = 1]− E[y0

i |Di = 0]
= E[αi|Di = 1] + E[µi + ρUBi |µi + UBi ≤ ȳ]− E[µi + ρUBi |µi + UBi > ȳ]

= ᾱ+ θ

µ̄− σ2
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σ2
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φ

(
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)
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ȳ−µ̄√
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)
 .
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In order to compute this parameter, we are going to set up a R function. For
reasons that will become clearer later, we will define two separate functions to
compute the first and second part of the formula. In the first part, you should
have recognised TT , that we have already computed in Lecture 1. We are going
to call the second part SB, for reasons that will become explicit in a bit.
delta.y.tt <- function(param){
return(param["baralpha"]+param["theta"]*param["barmu"]-param["theta"]

*((param["sigma2mu"]*dnorm((log(param["barY"])-param["barmu"])
/(sqrt(param["sigma2mu"]+param["sigma2U"]))))

/(sqrt(param["sigma2mu"]+param["sigma2U"])*pnorm((log(param["barY"])-param["barmu"])
/(sqrt(param["sigma2mu"]+param["sigma2U"]))))))

}
delta.y.sb <- function(param){
return(-(param["sigma2mu"]+param["rho"]*param["sigma2U"])/sqrt(param["sigma2mu"]+param["sigma2U"])

*dnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"])))
*(1/pnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"])))
+1/(1-pnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"]))))))

}
delta.y.ww <- function(param){
return(delta.y.tt(param)+delta.y.sb(param))

}

As a conclusion of all these derivations, WW in the population is equal to -1.298.
Remember that the value of TT in the population is 0.172.

In order to compute the WW estimator in a sample, I’m going to generate a
brand new sample and I’m going to choose a seed for the pseudo-random number
generator so that we obtain the same result each time we run the code. I use
set.seed(1234) in the code chunk below.
param <- c(8,.5,.28,1500)
names(param) <- c("barmu","sigma2mu","sigma2U","barY")
set.seed(1234)
N <-1000
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
Ds[YB<=param["barY"]] <- 1
l <- length(param)
param <- c(param,0.9,0.01,0.05,0.05,0.05,0.1)
names(param)[(l+1):length(param)] <- c("rho","theta","sigma2epsilon","sigma2eta","delta","baralpha")
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
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y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)

In this sample, the average outcome of the treated in the presence of the treatment
is

1∑N
i=1Di

N∑
i=1

Diyi = 7.074.

It is materialized by a circle on Figure 1.6. The average outcome of the untreated
is

1∑N
i=1(1−Di)

N∑
i=1

(1−Di)yi = 8.383.

It is materialized by a plus sign on Figure 1.6.
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Figure 1.6: Evolution of average outcomes in the treated and control group
before (Time =1) and after (Time=2) the treatment

The estimate of the WW comparison in the sample is thus:

ˆ∆Y
WW = 1∑N

i=1Di

N∑
i=1

YiDi −
1∑N

i=1(1−Di)

N∑
i=1

Yi(1−Di).

We have ˆ∆y
WW = -1.308. Remember that the value of TT in the sample is

∆y
TTs

= 0.168.

Overall, WW severely underestimates the effect of the treatment in our example.
WW suggests that the treatment has a negative effect on outcomes whereas we
know by construction that it has a positive one.
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1.4.1.2 Selection bias

When we form the with/without comparison, we do not recover the TT parameter.
Instead, we recover TT plus a bias term, called selection bias:

∆Y
WW = ∆Y

TT + ∆Y
SB .

Definition 1.6 (Selection bias). Selection bias is the difference between the
with/without comparison and the treatment on the treated parameter:

∆Y
SB = ∆Y

WW −∆Y
TT .

WW tries to approximate the counterfactual expected outcome in the treated
group by using E[Y 0

i |Di = 0], the expected outcome in the untreated group .
Selection bias appears because this proxy is generally poor. It is very easy to
see that selection bias is indeed directly due to this bad proxy problem:

Theorem 1.2 (Selection bias and counterfactual). Selection bias is the difference
between the counterfactual expected potential outcome in the absence of the
treatment among the treated and the expected potential outcome in the absence
of the treatment among the untreated.

∆Y
SB = E[Y 0

i |Di = 1]− E[Y 0
i |Di = 0].

Proof.

∆Y
SB = ∆Y

WW −∆Y
TT

= E[Yi|Di = 1]− E[Yi|Di = 0]− E[Y 1
i − Y 0

i |Di = 1]
= E[Y 0

i |Di = 1]− E[Y 0
i |Di = 0].

The first and second equalities stem only from the definition of both parameters.
The third equality stems from using the switching equation: Yi = Y 1

i Di+Y 0
i (1−

Di), so that E[Yi|Di = 1] = E[Y 1
i |Di = 1] and E[Yi|Di = 0] = E[Y 0

i |Di = 0].

Example 1.10. In the population, SB is equal to

∆y
SB = ∆y

WW −∆y
TT

= −1.298− 0.172
= −1.471

We could have computed SB directly using the formula from Theorem 1.2:
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∆y
SB = E[y0

i |Di = 1]− E[y0
i |Di = 0]

= −
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µ + ρσ2
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 .

When using the R function for SB that we have defined earlier, we indeed find:
∆y
SB = -1.471.

In the sample, ˆ∆y
SB =-1.308-0.168 = -1.476. Selection bias emerges because

we are using a bad proxy for the counterfactual. The average outcome for the
untreated is equal to 1∑N

i=1
(1−Di)

∑N
i=1(1−Di)yi = 8.383 while the counterfactual

average outcome for the treated is 1∑N

i=1
Di

∑N
i=1Diy

0
i = 6.906. Their difference

is as expected equal to SB: ˆ∆y
SB = 6.906 − 8.383 = -1.476. The counterfactual

average outcome of the treated is much smaller than the average outcome of the
untreated. On Figure 1.6, this is materialized by the fact that the plus sign is
located much above the triangle.

Remark. The concept of selection bias is related to but different from the concept
of sample selection bias. With sample selection bias, we worry that selection into
the sample might bias the estimated effect of a treatment on outcomes. With
selection bias, we worry that selection into the treatment itself might bias the
effect of the treatment on outcomes. Both biases are due to unbserved covariates,
but they do not play out in the same way.

For example, estimating the effect of education on women’s wages raises both
selection bias and sample selection bias issues. Selection bias stems from the
fact that more educated women are more likely to be more dynamic and thus to
have higher earnings even when less educated. Selection bias would be positive
in that case, overestimating the effect of education on earnings.

Sample selection bias stems from the fact that we can only use a sample of
working women in order to estimate the effect of education on wages, since we
do not observe the wages on non working women. But, selection into the labor
force might generate sample selection bias. More educated women participate
more in the labor market, while less educated women participate less. As a
consequence, less educated women that work are different from the overall sample
of less educated women. They might be more dynamic and work-focused. As a
consequence, their wages are higher than the average wages of the less educated
women. Comparing the wages of less educated women that work to those of
more educated women that work might understate the effect of education on
earnings. Sample selection bias would generate a negative bias on the education
coefficient.
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1.4.1.3 Confounding factors

Confounding factors are the factors that generate differences between treated
and untreated individuals even in the absence of the treatment. The confounding
factors are thus responsible for selection bias. In general, the mere fact of being
selected for receiving the treatment means that you have a host of characteristics
that would differentiate you from the unselected individuals, even if you were
not to receive the treatment eventually.

For example, if a drug is given to initially sicker individuals, then, we expect
that they will be sicker that the untreated in the absence of the treatment.
Comparing sick individuals to healthy ones is not a sound way to estimate the
effect of a treatment. Obviously, even if our treatment performs well, healthier
individuals will be healthier after the treatment has been allocated to the sicker
patients. The best we can expect is that the treated patients have recovered,
and that their health after the treatment is comparable to that of the untreated
patients. In that case, the with/without comparison is going to be null, whereas
the true effect of the treatment is positive. Selection bias is negative in that
case: in the absence of the treatment, the average health status of the treated
individuals would have been smaller than that of the untreated individuals.
The confounding factor is the health status of individuals when the decision to
allocate the drug has been taken. It is correlated to both the allocation of the
treatment (negatively) and to health in the absence of the treatment (positively).

Example 1.11. In our example, µi and UBi are the confounding factors. Because
the treatment is only given to individuals with pre-treament outcomes smaller
than a threshold (yBi ≤ ȳ), participants tend to have smaller µi and UBi than
non participants, as we can see on Figure 1.7.
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Figure 1.7: Distribution of confounders in the treated and control group

Since confounding factors are persistent, they affect the outcomes of participants
and non participants after the treatment date. µi persists entirely over time, and
UBi persists at a rate ρ. As a consequence, even in the absence of the treatment,
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participants have lower outcomes than non participants, as we can see on Figure
1.7.

We can derive the contributions of both confouding factors to overall SB:

E[Y 0
i |Di = 1] = E[µi + δ + U0

i |µi + UBi ≤ ȳ]
= δ + E[µi|µi + UBi ≤ ȳ] + ρE[UBi |µi + UBi ≤ ȳ]

∆y
SB = E[µi|µi + UBi ≤ ȳ]− E[µi|µi + UBi > ȳ]

+ ρ
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In order to evaluate these quantities, let’s build two R functions:
delta.y.sb.mu <- function(param){

return(-(param["sigma2mu"])/sqrt(param["sigma2mu"]+param["sigma2U"])
*dnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"])))
*(1/pnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"])))
+1/(1-pnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"]))))))

}
delta.y.sb.U <- function(param){

return(-(param["rho"]*param["sigma2U"])/sqrt(param["sigma2mu"]+param["sigma2U"])
*dnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"])))
*(1/pnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"])))
+1/(1-pnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"]))))))

}

The contribution of µi to selection bias is -0.978 while that of U0
i is of -0.493.

1.4.1.4 When does WW identify TT?

Are there conditions under which WW identify TT? The answer is yes: when
there is no selection bias, the proxy used by WW for the counterfactual quantity
is actually valid. Formally, WW identifies TT when the following assumption
holds:

Definition 1.7 (No selection bias). We assume the following:

E[Y 0
i |Di = 1] = E[Y 0

i |Di = 0].
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Under Assumption 1.7, the expected counterfactual outcome of the treated is
equal to the expected potential outcome of the untreated in the absence of the
treatment. This yields to the following result:

Theorem 1.3. Under Assumption 1.7, WW identifies the TT parameter:

∆Y
WW = ∆Y

TT .

Proof.

∆Y
WW = E[Yi|Di = 1]− E[Yi|Di = 0]

= E[Y 1
i |Di = 1]− E[Y 0

i |Di = 0]
= E[Y 1

i |Di = 1]− E[Y 0
i |Di = 1]

= ∆Y
TT ,

where the second equation uses the switching equation and the third uses
Assumption 1.7.

So, under Assumption 1.7, the WW comparison actually identifies the TT
parameter. We say that Assumption 1.7 is an identification assumption: it
serves to identify the parameter of interest using observed data. The intuition
for this result is simply that, under Assumption 1.7, there are no confounding
factors and thus no selection bias. under Assumption 1.7, the factors that yield
individuals to receive or not the treatment are mean-independent of the potential
outcomes in the absence of the treatment. In this case, the expected outcome in
the untreated group actually is a perfect proxy for the counterfactual expected
outcome of the treated group.

Obviously, Assumption 1.7 is extremely unlikely to hold in real life. For As-
sumption 1.7 to hold, it has to be that all the determinants of Di are actually
unrelated to Y 0

i . One way to enforce Assumption 1.7 is to randomize treatment
intake. We will see this in the Lecture on RCTs. It might also be possible that
Assumption 1.7 holds in the data in the absence of an RCT. But this is not very
likely, and should be checked by every mean possible.

One way to test for the validity of Assumption 1.7 is to compare the values of
observed covariates in the treated and untreated group. For Assumption 1.7 to
be credible, observed covariates should be distributed in the same way.

Another nice way to test for the validity of Assumption 1.7 with observed data
is to implement a placebo test. A placebo test looks for an effect where there
should be none, if we believe the identification assumptions. For example, under
Assumption 1.7 it should be (even though it is not rigorously implied) that
outcomes before the treatment are also mean-independent of the treatment
allocation. And actually, since a future treatment cannot have an effect today
(unless people anticipate the treatment, which we assume away here), the WW
comparison before the treatment should be null, therefore giving a zero effect of
the placebo treatment “will receive the treatment in the future.”
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Example 1.12. When the allocation rule defining Di is the eligibility rule that
we have used so far, we have already seen that Assumption 1.7 does not hold
and the placebo test should not pass either.

One way of generating Assumption 1.7 from the eligibility rule that we are using
is to mute the persistence in outcome dynamics. For example, one could set
ρ = 0 and σ2

µ = 0.
param <- c(8,0,.28,1500,0,0.01,0.05,0.05,0.05,0.1)
names(param) <- c("barmu","sigma2mu","sigma2U","barY","rho","theta","sigma2epsilon","sigma2eta","delta","baralpha")
param

## barmu sigma2mu sigma2U barY rho
## 8.00 0.00 0.28 1500.00 0.00
## theta sigma2epsilon sigma2eta delta baralpha
## 0.01 0.05 0.05 0.05 0.10

In that case, outcomes are not persistent and Assumption 1.7 holds:

E[y0
i |Di = 1] = E[µi + δ + U0

i |yBi ≤ ȳ]
= E[µ̄+ δ + εi|µ̄+ UBi ≤ ȳ]
= µ̄+ δ + E[εi|µ̄+ UBi ≤ ȳ]
= µ̄+ δ + E[εi|µ̄+ UBi > ȳ]
= E[µi + δ + U0

i |yBi > ȳ]
= E[y0

i |Di = 0],

where the second equality follows from σ2
µ = 0 and ρ = 0 and the fourth from

εi ⊥⊥ UBi . Another direct way to see this is to use the formula for selection
bias that we have derived above. It is easy to see that with ρ = 0 and σ2

µ = 0,
∆y
SB = 0. To be sure, we can compute ∆y

SB with the new parameter values:
∆y
SB = 0. As a consequence, ∆y

TT = 0.18 = 0.18 = ∆y
WW .

Remark. You might have noticed that the value of ∆y
TT is different than before.

It is normal, since it depends on the values of parameters, and especially on σ2
µ

and ρ.

Let’s see how these quantities behave in the sample.
set.seed(1234)
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
Ds[YB<=param["barY"]] <- 1
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epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)

We can see that ˆE[Y 0
i |Di = 1] = 8.038 ≈ 8.055 = ˆE[Y 0

i |Di = 0]. This means
that WW should be close to TT : ˆ∆y

TT = 0.198 ≈ 0.182 = ˆ∆y
WW . Note that

ˆWW in the sample is not exactly, but only approximately, equal to TT in the
population and in the sample. This is an instance of the Fundamental Problem
of Statistical Inference that we will study in the next chapter.

Under these restrictions, the placebo test would unfortunately conclude against
Assumption 1.7 even though it is valid:

E[yBi |Di = 1] = E[µi + UBi |yBi ≤ ȳ]
= E[µ̄+ UBi |µ̄+ UBi ≤ ȳ]
= µ̄+ E[UBi |µ̄+ UBi ≤ ȳ]
6= µ̄+ E[UBi |µ̄+ UBi > ȳ]
= E[µi + U0

i |yBi > ȳ]
= E[yBi |Di = 0].

In the sample, we indeed have that ˆE[Y Bi |Di = 1] = 7.004 6= 8.072
= ˆE[Y Bi |Di = 0]. The reason for the failure of the placebo test to con-
clude that Ww is actually correct is that the UBi shock enters both into the
selection equation and the outcome equation for yBi , generating a wage at period
B between the outcomes of the treated and of the untreated. Since it is not
persistent, this wedge does not generate selection bias. This wedge would not be
detected if we could perform it further back in time, before the selection period.

Another way to make Assumption 1.7 work is to generate a new allocation rule
where all the determinants of treatment intake are indeed orthogonal to potential
outcomes and to outcomes before the treatment. Let’s assume for example that
Di = 1[Vi ≤ ȳ], with Vi ∼ N (µ̄, σ2

µ + σ2
U ) and Vi ⊥⊥ (Y 0

i , Y
1
i , Y

B
i , µi, ηi). In that

case, Assumption 1.7 holds and the placebo test does work. Indeed, we have:
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∆y
TT = E[Y 1

i − Y 0
i |Di = 1]

= E[αi|Di = 1]
= E[ᾱ+ θµi + ηi|Vi ≤ ȳ]
= ᾱ+ θµ̄

= ∆y
ATE

∆y
WW = E[Yi|Di = 1]− E[Yi|Di = 0]

= E[Y 1
i |Di = 1]− E[Y 0

i |Di = 0]
= E[Y 1

i |Vi ≤ ȳ]− E[Y 0
i |Vi > ȳ]

= E[Y 1
i ]− E[Y 0

i ]
= ∆y

ATE

ATE is the Average Treatment Effect in the population. It is the expected effect
of the treatment on all the members of the population, not only on the treated.
When the treatment is randomly allocated, both TT and ATE are equal, since
the treated are a random subset of the overall population. I prefer to use ATE
for my definition of the R function in order not to erase the definition of the TT
function:
delta.y.ate <- function(param){

return(param["baralpha"]+param["theta"]*param["barmu"])
}

In the population, WW identifies TT : ∆y
TT = 0.18 = ∆y

WW . Let’s see how these
quantities behave in the sample:
set.seed(1234)
N <-1000
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
V <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]+param["sigma2U"]))
Ds[V<=log(param["barY"])] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
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y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)

In the sample, the counterfactual is well approximated by the outcomes of the
untreated: ˆE[Y 0

i |Di = 1] = 8.085 ≈ 8.054 = ˆE[Y 0
i |Di = 0]. As a consequence,

WW should be close to TT : ˆ∆y
TT = 0.168 ≈ 0.199 = ˆ∆y

WW . The placebo test
is also valid in that case: ˆE[Y Bi |Di = 1] = 7.95 ≈ 7.99 = ˆE[Y Bi |Di = 0].

1.4.2 The before/after comparison, temporal confounders
and time trend bias

The before/after comparison (BA) is also very intuitive: it consists in looking at
how the outcomes of the treated have changed over time and to attribute this
change to the effect of the treatment. The problem is that other changes might
have affected outcomes in the absence of the treatment, thereby biasing BA.
The bias of BA is called time-trend bias. It is due to confounders that affect
the outcomes of the treated over time. This section defines the BA estimator,
derives its bias, describes the role of the confounders and states conditions under
which BA identifies TT .

Example 1.13. Before computing any estimates, we need to reset all our
parameter values and generated sample it their usual values:
param <- c(8,.5,.28,1500)
names(param) <- c("barmu","sigma2mu","sigma2U","barY")
set.seed(1234)
N <-1000
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
Ds[YB<=param["barY"]] <- 1
l <- length(param)
param <- c(param,0.9,0.01,0.05,0.05,0.05,0.1)
names(param)[(l+1):length(param)] <- c("rho","theta","sigma2epsilon","sigma2eta","delta","baralpha")
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)
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1.4.2.1 The before/after comparison

The before/after estimator (BA) compares the outcomes of the treated after
taking the treatment to the outcomes of the treated before taking the treatment.
It is also sometimes called a “pre-post comparison.”

Definition 1.8 (Before/after comparison). The before/after comparison is the
difference between the expected outcomes in the treated group after the treatment
and the expected outcomes in the same group before the treatment:

∆Y
BA = E[Yi|Di = 1]− E[Y Bi |Di = 1].

Example 1.14. In the population, the BA estimator has the following shape:

∆y
BA = E[yi|Di = 1]− E[yBi |Di = 1]

= E[y1
i − yBi |Di = 1]

= E[αi|Di = 1] + δ + (ρ− 1)E[UBi |µi + UBi ≤ ȳ]

= ∆y
TT + δ + (1− ρ)

 σ2
U√

σ2
µ + σ2

U

φ

(
ȳ−µ̄√
σ2
µ+σ2

U

)
Φ
(

ȳ−µ̄√
σ2
µ+σ2

U

)
 .

In order to compute BA in the population, we can again use a R function,
combining the value of TT and that of the second part of the formula, that we
are going to denote TB for reasons that are going to become clear in a bit.
delta.y.tb <- function(param){
return(param["delta"]

+(1-param["rho"])*((param["sigma2U"])/sqrt(param["sigma2mu"]+param["sigma2U"]))
*dnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"])))
/pnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"]))))

}
delta.y.ba <- function(param){

return(delta.y.tt(param)+ delta.y.tb(param))
}

The value of BA in the population is thus ∆y
BA = 0.265. Remember that the

true value of TT in the population is 0.172. In the sample, the value of BA is
ˆ∆y
BA = 0.267. Remember that the value of TT in the sample is ∆y

TTs
= 0.168.

1.4.2.2 Time trend bias

When we form the before/after comparison, we do not recover the TT parameter.
Instead, we recover TT plus a bias term, called time trend bias:

∆Y
BA = ∆Y

TT + ∆Y
TB .
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Definition 1.9 (Time trend bias). Time trend bias is the difference between
the before/after comparison and the treatment on the treated parameter:

∆Y
TB = ∆Y

BA −∆Y
TT .

BA uses the expected outcome in the treated group before the treatment as a
proxy for the expected counterfactual outcome in the absence of the treatment
in the same group. TB is due to the fact that BA uses an imperfect proxy for
the counterfactual expected outcome of the treated:

Theorem 1.4. Time trend bias is the difference between the counterfactual
expected potential outcome in the absence of the treatment among the treated and
the expected outcome before the treatment in the same group.

∆Y
TB = E[Y 0

i |Di = 1]− E[Y Bi |Di = 1].

Proof.

∆Y
TB = ∆Y

BA −∆Y
TT

= E[Yi|Di = 1]− E[Y Bi |Di = 1]− E[Y 1
i − Y 0

i |Di = 1]
= E[Y 0

i |Di = 1]− E[Y Bi |Di = 1].

The first and second equalities stem from the definition of both parameters. The
third equality stems from using the switching equation: Yi = Y 1

i Di+Y 0
i (1−Di),

so that E[Yi|Di = 1] = E[Y 1
i |Di = 1].

Example 1.15. In the population, TB is equal to

∆y
TB = ∆y

BA −∆y
TT = 0.265 − 0.172 = 0.093. We could have computed this

result using Theorem1.4:

∆y
TB = E[y0

i |Di = 1]− E[yBi |Di = 1]

= δ + (1− ρ)

 σ2
U√

σ2
µ + σ2

U

φ

(
ȳ−µ̄√
σ2
µ+σ2

U

)
Φ
(

ȳ−µ̄√
σ2
µ+σ2

U

)
 .

Using the R function that we have defined previously, this approach gives ∆y
TB =

0.093.

In the sample ˆ∆y
BA = 0.267 while ˆ∆y

TT = 0.168, so that ˆ∆y
TB = 0.099. Time

trend bias emerges because we are using a bad proxy for the counterfactual
average outcomes of the treated. The average outcome of the treated before
the treatment takes place is ˆE[yBi |Di = 1] = 6.807 while the true counterfactual
average outcome for the treated after the treatment is ˆE[y0

i |Di = 1] = 6.906.
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Outcomes would have increased in the treatment group even in the absence of
the treatment. As a consequence, the BA comparison overestimates the true
effect of the treatment. TB estimated using Theorem 1.4 is equal to: ˆ∆y

TB =
6.906 − 6.807 = 0.099. This can be seen on Figure 1.6: the triangle in period 2
is higher than in period 1.

1.4.2.3 Temporal confounders

Temporal confounders make the outcomes of the treated change at the same time
as the treatment status changes, thereby confounding the effect of the treatment.
Temporal confounders are responsible for time trend bias.

Over time, there are other things that change than the treatment status. For
example, maybe sick individuals naturally recover, and thus their counterfactual
health status is better than ther health status before taking the treatment. As a
results, BA might overstimate the effect of the treatment. It might also be that
the overall level of health in the country has increased, because of increasing
GDP, for example.

Example 1.16. In our example, δ and UBi are the confounders. δ captures the
overall changes in outcomes over time (business cycle, general improvement of
health status). UBi captures the fact that transitorily sicker individuals tend
at the same time to receive the treatment and also to recover naturally. The
BA comparison incorrectly attributes both of these changes to the effect of the
treatment. We can compute the relative contributions of both sources to the
overall time-trend bias in the population.

δ contributes for 0.05 while UBi contributes for 0.043.

1.4.2.4 When does BA identify TT?

Are there conditions under which BA actually identifies TT? The answer is yes,
when there are no temporal confounders. When that is the case, the variation of
outcomes over time is only due to the treatment and it identifies the treatment
effect.

More formally, we make the following assumption:

Definition 1.10 (No time trend bias). We assume the following:

E[Y 0
i |Di = 1] = E[Y Bi |Di = 1].

Under Assumption 1.10, the expected counterfactual outcome of the treated is
equal to the expected potential outcome of the untreated in the absence of the
treatment. This yields to the following result:

Theorem 1.5. Under Assumption 1.10, BA identifies the TT parameter:

∆Y
BA = ∆Y

TT .
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Proof.

∆Y
BA = E[Yi|Di = 1]− E[Y Bi |Di = 1]

= E[Y 1
i |Di = 1]− E[Y Bi |Di = 1]

= E[Y 1
i |Di = 1]− E[Y 0

i |Di = 1]
= ∆Y

TT ,

where the second equation uses the switching equation and the third uses
Assumption 1.10.

Under Assumption 1.10 the outcomes of the treated before the treatment takes
place are a good proxy for the counterfactual. As a consequence, BA identifies
TT . Under Assumption 1.10is very unlikely to hold in real life. Indeed, it
requires tha nothing happens to the outcomes of the treated in the absence
of the treatment. Assumption 1.10 rules out economy-wide shocks but also
mean-reversion, such as when sick people naturally recover from an illness.

A good way to test for the validity of Assumption 1.10 is to perform a placebo
test. Two of these tests are possible. One placebo test would be to apply the BA
estimator between two pre-treatment periods where nothing should happen since
the treatment status does not vary and, by assumption, nothing else should vary.
A second placebo test would be to apply the BA estimator to a group that does
not receive the treatment. The untreated group is a perfectly suitable candidate
for that. Assumption 1.10 does not imply that there should be no change in the
untreated outcomes, but detecting such a change would cast a serious doubt on
the validity of Assumption 1.10.

Example 1.17. One way to generate a population in which Assumption 1.10
holds is to shut down the two sources of confounders in our original model by
setting both δ = 0 and ρ = 1.
param <- c(8,0.5,.28,1500,1,0.01,0.05,0.05,0,0.1)
names(param) <- c("barmu","sigma2mu","sigma2U","barY","rho","theta","sigma2epsilon","sigma2eta","delta","baralpha")
param

## barmu sigma2mu sigma2U barY rho
## 8.00 0.50 0.28 1500.00 1.00
## theta sigma2epsilon sigma2eta delta baralpha
## 0.01 0.05 0.05 0.00 0.10

In that case, according to the formula we have derived for TB, we have: ∆y
TB =

0. Let’s see how these quantities behave in the sample:
set.seed(1234)
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
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Ds <- rep(0,N)
Ds[YB<=param["barY"]] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)

In the sample, the value of BA is ˆ∆y
BA = 0.173 while the value of TT in the

sample is ∆y
TTs

= 0.168. We cannot perform a placebo test using two periods of
pre-treatment outcomes for the treated since we have generated only one period
of pre-treatment outcome. We will be able to perform this test later in the DID
lecture. We can perfom the placebo test that applies the BA estimator to the
untreated. The value of BA for the untreated is ˆ∆y

BA|D=0 = 0.007, which is
reasonably close to zero.
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Chapter 2

Fundamental Problem of
Statistical Inference

The Fundamental Problem of Statistical Inference (FPSI) states that, even if we
have an estimator E that identifies TT in the population, we cannot observe E
because we only have access to a finite sample of the population. The only thing
that we can form from the sample is a sample equivalent Ê to the population
quantity E, and Ê 6= E. For example, the sample analog toWW is the difference
in means between treated and untreated units ˆWW . As we saw in the last lecture,

ˆWW is never exactly equal to WW .

Why is Ê 6= E? Because a finite sample is never perfectly representative of
the population. In a sample, even in a random sample, the distribution of the
observed and unobserved covariates deviates from the true population one. As
a consequence, the sample value of the estimator is never precisely equal to
the population value, but fluctuates around it with sampling noise. The main
problem with the FPSI is that if we find an effect of our treatment, be it small
or large, we cannot know whether we should attribute it to the treatment or to
the bad or good luck of sampling noise.

What can we do to deal with the FPSI? I am going to argue that there are
mainly two things that we might want to do: estimating the extent of sampling
noise and decreasing sampling noise.

Estimating sampling noise means measuring how much variability there is in our
estimate Ê due to the sampling procedure. This is very useful because it enables
us to form a confidence interval that gauges how far from Ê the true value E
might be. It is a measure of the precision of our estimation and of the extent
to which sampling noise might drive our results. Estimating sampling noise is
very hard because we have only access to one sample and we would like to know
the behavior of our estimator over repeated samples. We are going to learn four

43
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ways to estimate the extent of sampling noise using data from one sample.

Because sampling noise is such a nuisance and makes our estimates imprecise, we
would like to be able to make it as small as possible. We are going to study three
ways of decreasing sampling noise, two that take place before collecting the data
(increasing sample size, stratifying) and one that takes place after (conditioning).

Maybe you are surprised not to find statistical significance tests as an important
answer to the FPSI. I argue in this lecture that statistical tests are misleading
tools that make us overestimate the confidence in our results and underestimate
the scope of sampling noise. Statistical tests are not meant to be used for
scientific research, but were originally designed to make decisions in industrial
settings where the concept of successive sampling made actual sense. Statistical
tests also generate collective behaviors such as publication bias and specification
search that undermine the very foundations of science. A general movement
in the social sciences, but also in physics, is starting to ban the reporting of
p-values.

2.1 What is sampling noise? Definition and il-
lustration

In this section, I am going to define sampling noise and illustrate it with a
numerical example. In Section 2.1.1, I define sampling noise. In section 2.1.2,
I illustrate how sampling noise varies when one is interested in the population
treatment effect. In section 2.1.3, I illustrate how sampling noise varies when
one is interesetd in the sample treatment effect. Finally, in section 2.1.4, I show
how confidence intervals can be built from an estimate of sampling noise.

2.1.1 Sampling noise, a definition
Sampling noise measures how much sampling variability moves the sample
estimator Ê around. One way to define it more rigorously is to make it equal to
the width of a confidence interval:

Definition 2.1 (Sampling noise). Sampling noise is the width of the symmetric
interval around TT within which δ ∗ 100% of the sample estimators fall, where δ
is the confidence level. As a consequence, sampling noise is equal to 2ε where ε
is such that:

Pr(|Ê − TT | ≤ ε) = δ.

This definition tries to capture the properties of the distribution of Ê using only
one number. As every simplification, it leaves room for dissatisfaction, exactly
as a 2D map is a convenient albeit arbitrary betrayal of a 3D phenomenon. For
example, there is nothing sacred about the symmetry of the interval. It is just
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extremely convenient. One might prefer an interval that is symmetric in tail
probabilities instead. Feel free to explore with different concepts if you like.

A related concept to that of sampling noise is that of precision: the smaller the
sampling noise, the higher the precision. Precision can be defined for example
as the inverse of sampling noise 1

2ε .

Finally, a very useful concept is that of signal to noise ratio. It is not used in
economics, but physicists use this concept all the time. The signal to noise ratio
measures the treatment effect in multiple of the sampling noise. If they are of
the same order of magnitude, we have a lot of noise and little confidence in
our estimates. If the signal is much larger than the noise, we tend to have a
lot of confidence in our parameter estimates. The signal to noise ratio can be
computed as follows: E

2ε or Ê
2ε .

Remark. A very striking result is that the signal to noise ratio of a result that is
marginally significant at the 5% level is very small, around one half, meaning
that the noise is generally double the signal in these results. We will derive this
result after studying how to estimate sampling noise with real data.

There are two distinct ways of understanding sampling noise, depending on
whether we are after the population treatment effect (∆Y

TT ) or the sample
treatment effect (∆Y

TTs
). Sampling noise for the population treatment effect

stems from the fact that the sample is not perfectly representative of the
population. The sample differs from the population and thus the sample estimates
differs from the population estimate. Sampling noise for the sample parameter
stems from the fact that the control group is not a perfect embodiment of the
counterfactual. Discrepancies between treated and control samples are going to
generate differences between the WW estimate and the TT effect in the sample.

2.1.2 Sampling noise for the population treatment effect
Sampling noise for the population treatment effect stems from the fact that the
sample is not perfectly representative of the population.

Example 2.1. In order to assess the scope of sampling noise for our population
treatment effect estimate, let’s first draw a sample. In order to be able to do
that, I first have to define the parameter values:
param <- c(8,.5,.28,1500,0.9,0.01,0.05,0.05,0.05,0.1)
names(param) <- c("barmu","sigma2mu","sigma2U","barY","rho","theta","sigma2epsilon","sigma2eta","delta","baralpha")
param

## barmu sigma2mu sigma2U barY rho
## 8.00 0.50 0.28 1500.00 0.90
## theta sigma2epsilon sigma2eta delta baralpha
## 0.01 0.05 0.05 0.05 0.10
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set.seed(1234)
N <-1000
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
V <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]+param["sigma2U"]))
Ds[V<=log(param["barY"])] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)

delta.y.ate <- function(param){
return(param["baralpha"]+param["theta"]*param["barmu"])

}

In this sample, the WW estimator yields an estimate of ˆ∆y
WW = 0.133. Despite

random assignment, we have ˆ∆y
WW 6= ∆y

TT = 0.18, an instance of the FPSI.

In order to see how sampling noise varies, let’s draw another sample. In order
to do so, I am going to choose a different seed to initialize the pseudo-random
number generator in R.
set.seed(12345)
N <-1000
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
V <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]+param["sigma2U"]))
Ds[V<=log(param["barY"])] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
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Y0 <- exp(y0)
Y1 <- exp(y1)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)

In this sample, the WW estimator yields an estimate of ˆ∆y
WW = 0.179. Again,

despite random assignment, we have ˆ∆y
WW 6= ∆y

TT = 0.18, an instance of the
FPSI. Furthermore, the estimate of the population treatment effect in this sample
differs from the previous one, a consequence of sampling noise.

Let’s now visualize the extent of sampling noise by repeating the procedure
multiple times with various sample sizes. This is called Monte Carlo replications:
in each replication, I choose a sample size, draw one sample from the population
and compute the ˆWW estimator. At each replication, the sample I’m using
is different, reflecting the actual sampling process and enabling me to gauge
the extent of sampling noise. In order to focus on sampling noise alone, I am
running the replications in the model in which selection into the treatment is
independent on potential outcomes, so that WW = TT in the population. In
order to speed up the process, I am using parallelized computing: I send each
sample to a different core in my computer so that several samples can be run at
the same time. You might want to adapt the program below to the number of
cores you actually have using the ncpus variable in the beginning of the .Rmd file
that generates this page.. In order to parallelize computations, I use the Snowfall
package in R, that gives very simple and intuitive parallelization commands.
In order to save time when generating the graph, I use the wonderful “cache”
option of knitr: it stores the estimates from the code chunk and will not rerun it
as long as the code inside the chunk has not been altered nor the code of the
chunks that it depends on (parameter values, for example).
monte.carlo.ww <- function(s,N,param){

set.seed(s)
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
V <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]+param["sigma2U"]))
Ds[V<=log(param["barY"])] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
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y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)
return(c((1/sum(Ds))*sum(y*Ds)-(1/sum(1-Ds))*sum(y*(1-Ds)),var(y[Ds==1]),var(y[Ds==0]),mean(Ds)))

}

simuls.ww.N <- function(N,Nsim,param){
simuls.ww <- as.data.frame(matrix(unlist(lapply(1:Nsim,monte.carlo.ww,N=N,param=param)),nrow=Nsim,ncol=4,byrow=TRUE))
colnames(simuls.ww) <- c('WW','V1','V0','p')
return(simuls.ww)

}

sf.simuls.ww.N <- function(N,Nsim,param){
sfInit(parallel=TRUE,cpus=ncpus)
sim <- as.data.frame(matrix(unlist(sfLapply(1:Nsim,monte.carlo.ww,N=N,param=param)),nrow=Nsim,ncol=4,byrow=TRUE))
sfStop()
colnames(sim) <- c('WW','V1','V0','p')
return(sim)

}

simuls.ww <- lapply(N.sample,sf.simuls.ww.N,Nsim=Nsim,param=param)

## R Version: R version 4.1.1 (2021-08-10)
par(mfrow=c(2,2))
for (i in 1:4){
hist(simuls.ww[[i]][,'WW'],main=paste('N=',as.character(N.sample[i])),xlab=expression(hat(DeltaˆyWW)),xlim=c(-0.15,0.55))
abline(v=delta.y.ate(param),col="red")

}
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Figure 2.1: Distribution of the WW estimator over replications of samples of
different sizes

Figure 2.1 is essential to understanding statistical inference and the properties
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of our estimators. We can see on Figure 2.1 that the estimates indeed move
around at each sample replication. We can also see that the estimates seem to
be concentrated around the truth. We also see that the estimates are more and
more concentrated around the truth as sample size grows larger and larger.

How big is sampling noise in all of these examples? We can compute it by using
the replications as approximations to the true distribution of the estimator after
an infinite number of samples has been drawn. Let’s first choose a confidence
level and then compute the empirical equivalent to the formula in Definition 2.1.
delta<- 0.99
delta.2 <- 0.95
samp.noise <- function(estim,delta){
return(2*quantile(abs(delta.y.ate(param)-estim),prob=delta))

}
samp.noise.ww <- sapply(lapply(simuls.ww,`[`,,1),samp.noise,delta=delta)
names(samp.noise.ww) <- N.sample
samp.noise.ww

## 100 1000 10000 1e+05
## 1.09916429 0.39083801 0.11582492 0.03527744

Let’s also compute precision and the signal to noise ratio and put all of these
results together in a nice table.
precision <- function(estim,delta){

return(1/samp.noise(estim,delta))
}
signal.to.noise <- function(estim,delta,param){
return(delta.y.ate(param)/samp.noise(estim,delta))

}
precision.ww <- sapply(lapply(simuls.ww,`[`,,1),precision,delta=delta)
names(precision.ww) <- N.sample
signal.to.noise.ww <- sapply(lapply(simuls.ww,`[`,,1),signal.to.noise,delta=delta,param=param)
names(signal.to.noise.ww) <- N.sample
table.noise <- cbind(samp.noise.ww,precision.ww,signal.to.noise.ww)
colnames(table.noise) <- c('Sampling noise', 'Precision', 'Signal to noise ratio')
knitr::kable(table.noise,caption=paste('Sampling noise of $\\hat{WW}$ for the population treatment effect with $\\delta=$',delta,'for various sample sizes',sep=' '),booktabs=TRUE,digits = c(2,2,2),align=c('c','c','c'))

Finally, a nice way to summarize the extent of sampling noise is to graph how
sampling noise varies around the true treatment effect, as shown on Figure 2.2.
colnames(table.noise) <- c('sampling.noise', 'precision', 'signal.to.noise')
table.noise <- as.data.frame(table.noise)
table.noise$N <- as.numeric(rownames(table.noise))
table.noise$TT <- rep(delta.y.ate(param),nrow(table.noise))
ggplot(table.noise, aes(x=as.factor(N), y=TT)) +
geom_bar(position=position_dodge(), stat="identity", colour='black') +
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Table 2.1: Sampling noise of ˆWW for the population treatment effect with δ =
0.99 for various sample sizes

Sampling noise Precision Signal to noise ratio
100 1.10 0.91 0.16
1000 0.39 2.56 0.46
10000 0.12 8.63 1.55
1e+05 0.04 28.35 5.10

geom_errorbar(aes(ymin=TT-sampling.noise/2, ymax=TT+sampling.noise/2), width=.2,position=position_dodge(.9),color='red') +
xlab("Sample Size")+
theme_bw()
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Figure 2.2: Sampling noise of ˆWW (99% confidence) around TT for various
sample sizes

With N = 100, we can definitely see on Figure 2.2 that sampling noise is
ridiculously large, especially compared with the treatment effect that we are
trying to estimate. The signal to noise ratio is 0.16, which means that sampling
noise is an order of magnitude bigger than the signal we are trying to extract.
As a consequence, in 22.2% of our samples, we are going to estimate a negative
effect of the treatment. There is also a 20.4% chance that we end up estimating
an effect that is double the true effect. So how much can we trust our estimate
from one sample to be close to the true effect of the treatment when N = 100?
Not much.

With N = 1000, sampling noise is still large: the signal to noise ratio is 0.46,
which means that sampling noise is double the signal we are trying to extract.
As a consequence, the chance that we end up with a negative treatment effect
has decreased to 0.9% and that we end up with an effect double the true one is
1%. But still, the chances that we end up with an effect that is smaller than
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three quarters of the true effect is 25.6% and the chances that we end up with an
estimator that is 25% bigger than the true effect is 26.2%. These are nontrivial
differences: compare a program that increases earnings by 13.5% to one that
increases them by 18% and another by 22.5%. They would have completely
different cost/benefit ratios. But we at least trust our estimator to give us a
correct idea of the sign of the treatment effect and a vague and imprecise idea of
its magnitude.

With N = 104, sampling noise is smaller than the signal, which is encouraging.
The signal to noise ratio is 1.55. In only 1% of the samples does the estimated
effect of the treatment become smaller than 0.125 or bigger than 0.247. We
start gaining a lot of confidence in the relative magnitude of the effect, even if
sampling noise is still responsible for economically significant variation.

With N = 105, sampling noise has become trivial. The signal to noise ratio
is 5.1, which means that the signal is now 5 times bigger than the sampling
noise. In only 1% of the samples does the estimated effect of the treatment
become smaller than 0.163 or bigger than 0.198. Sampling noise is not any more
responsible for economically meaningful variation.

2.1.3 Sampling noise for the sample treatment effect
Sampling noise for the sample parameter stems from the fact that the treated
and control groups are not perfectly identical. The distribution of observed and
unobserved covariates is actually different, because of sampling variation. This
makes the actual comparison of means in the sample a noisy estimate of the
true comparison that we would obtain by comparing the potential outcomes of
the treated directly.

In order to understand this issue well and to be able to illustrate it correctly, I
am going to focus on the average treatment effect in the whole sample, not on
the treated: ∆Y

ATEs
= 1

N

∑N
i=1(Y 1

i − Y 0
i ). This enables me to define a sample

parameter that is independent of the allocation of Di. This is without important
consequences since these two parameters are equal in the population when there
is no selection bias, as we are assuming since the beginning of this lecture.
Furthermore, if we view the treatment allocation generating no selection bias as
a true random assignment in a Randomized Controlled Trial (RCT), then it is
still possible to use this approach to estimate TT if we view the population over
which we randomise as the population selected for receiving the treatment, as
we will see in the lecture on RCTs.

Example 2.2. In order to assess the scope of sampling noise for our sample
treatment effect estimate, we first have to draw a sample:
set.seed(1234)
N <-1000
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
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yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
V <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]+param["sigma2U"]))
Ds[V<=log(param["barY"])] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)

In this sample, the treatment effect parameter is ∆y
ATEs

= 0.171. The WW

estimator yields an estimate of ˆ∆y
WW = 0.133. Despite random assignment, we

have ∆y
ATEs

6= ˆ∆y
WW , an instance of the FPSI.

In order to see how sampling noise varies, let’s draw a new treatment allocation,
while retaining the same sample and the same potential outcomes.
set.seed(12345)
N <-1000
Ds <- rep(0,N)
V <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]+param["sigma2U"]))
Ds[V<=log(param["barY"])] <- 1
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)

In this sample, the treatment effect parameter is still ∆y
ATEs

= 0.171. The
WW estimator yields now an estimate of ˆ∆y

WW = 0.051. The WW estimate is
different from our previous estimate because the treatment was allocated to a
different random subset of people.

Why is this second estimate so imprecise? It might because it estimates one of the
two components of the average treatment effect badly, or both. The true average
potential outcome with the treatment is, in this sample, 1

N

∑N
i=1 y

1
i = 8.207

while the WW estimate of this quantity is 1∑N

i=1
Di

∑N
i=1Diyi = 8.113. The true

average potential outcome without the treatment is, in this sample, 1
N

∑N
i=1 y

0
i =

8.036 while the WW estimate of this quantity is 1∑N

i=1
(1−Di)

∑N
i=1(1−Di)yi =

8.062. It thus seems that most of the bias in the estimated effect stems from
the fact that the treatment has been allocated to individuals with lower than
expected outcomes with the treatment, be it because they did not react strongly
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to the treatment, or because they were in worse shape without the treatment.
We can check which one of these two explanations is more important. The true
average effect of the treatment is, in this sample, 1

N

∑N
i=1(y1

i −y0
i ) = 0.171 while,

in the treated group, this quantity is 1∑N

i=1
Di

∑N
i=1Di(y1

i −y0
i ) = 0.18. The true

average potential outcome without the treatment is, in this sample, 1
N

∑N
i=1 y

0
i =

8.036 while, in the treated group, this quantity is 1∑N

i=1
Di

∑N
i=1Diy

0
i = 7.933.

The reason for the poor performance of the WW estimator in this sample
is that individuals with lower counterfactual outcomes were included in the
treated group, not that the treatment had lower effects on them. The bad
counterfactual outcomes of the treated generates a bias of -0.103, while the bias
due to heterogeneous reactions to the treatment is of 0.009. The last part of the
bias is the one due to the fact that the individuals in the control group have
slightly better counterfactual outcomes than in the sample: -0.026. The sum
of these three terms yields the total bias of our WW estimator in this second
sample: -0.12.

Let’s now assess the overall effect of sampling noise on the estimate of the sample
treatment effect for various sample sizes. In order to do this, I am going to use
parallelized Monte Carlo simulations again. For the sake of simplicity, I am
going to generate the same potential outcomes in each replication, using the
same seed, and only choose a different treatment allocation.
monte.carlo.ww.sample <- function(s,N,param){
set.seed(1234)
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
set.seed(s)
Ds <- rep(0,N)
V <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]+param["sigma2U"]))
Ds[V<=log(param["barY"])] <- 1
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)
return((1/sum(Ds))*sum(y*Ds)-(1/sum(1-Ds))*sum(y*(1-Ds)))

}
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simuls.ww.N.sample <- function(N,Nsim,param){
return(unlist(lapply(1:Nsim,monte.carlo.ww.sample,N=N,param=param)))

}

sf.simuls.ww.N.sample <- function(N,Nsim,param){
sfInit(parallel=TRUE,cpus=ncpus)
sim <- sfLapply(1:Nsim,monte.carlo.ww.sample,N=N,param=param)
sfStop()
return(unlist(sim))

}

simuls.ww.sample <- lapply(N.sample,sf.simuls.ww.N.sample,Nsim=Nsim,param=param)

monte.carlo.ate.sample <- function(N,s,param){
set.seed(s)
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
Ds <- rep(0,N)
V <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]+param["sigma2U"]))
Ds[V<=log(param["barY"])] <- 1
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)
return(mean(alpha))

}

par(mfrow=c(2,2))
for (i in 1:4){
hist(simuls.ww.sample[[i]],main=paste('N=',as.character(N.sample[i])),xlab=expression(hat(DeltaˆyWW)),xlim=c(-0.15,0.55))
abline(v=monte.carlo.ate.sample(N.sample[[i]],1234,param),col="red")

}

Let’s also compute sampling noise, precision and the signal to noise ratio in
these examples.
samp.noise.sample <- function(i,delta,param){
return(2*quantile(abs(monte.carlo.ate.sample(1234,N.sample[[i]],param)-simuls.ww.sample[[i]]),prob=delta))
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Figure 2.3: Distribution of the WW estimator over replications of treatment
allocation for samples of different sizes

Table 2.2: Sampling noise of ˆWW for the sample treatment effect with δ = 0.99
and for various sample sizes

Sampling noise Precision Signal to noise ratio
100 1.208 0.828 0.149
1000 0.366 2.729 0.482
10000 0.122 8.218 1.585
1e+05 0.033 30.283 5.453

}
samp.noise.ww.sample <- sapply(1:4,samp.noise.sample,delta=delta,param=param)
names(samp.noise.ww.sample) <- N.sample

precision.sample <- function(i,delta,param){
return(1/samp.noise.sample(i,delta,param=param))

}
signal.to.noise.sample <- function(i,delta,param){
return(monte.carlo.ate.sample(1234,N.sample[[i]],param)/samp.noise.sample(i,delta,param=param))

}
precision.ww.sample <- sapply(1:4,precision.sample,delta=delta,param=param)
names(precision.ww.sample) <- N.sample
signal.to.noise.ww.sample <- sapply(1:4,signal.to.noise.sample,delta=delta,param=param)
names(signal.to.noise.ww.sample) <- N.sample
table.noise.sample <- cbind(samp.noise.ww.sample,precision.ww.sample,signal.to.noise.ww.sample)
colnames(table.noise.sample) <- c('Sampling noise', 'Precision', 'Signal to noise ratio')
knitr::kable(table.noise.sample,caption=paste('Sampling noise of $\\hat{WW}$ for the sample treatment effect with $\\delta=$',delta,'and for various sample sizes',sep=' '),booktabs=TRUE,align=c('c','c','c'),digits=c(3,3,3))

Finally, let’s compare the extent of sampling noise for the population and the
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sample treatment effect parameters.
colnames(table.noise.sample) <- c('sampling.noise', 'precision', 'signal.to.noise')
table.noise.sample <- as.data.frame(table.noise.sample)
table.noise.sample$N <- as.numeric(rownames(table.noise.sample))
table.noise.sample$TT <- sapply(N.sample,monte.carlo.ate.sample,s=1234,param=param)
table.noise.sample$Type <- 'TTs'
table.noise$Type <- 'TT'
table.noise.tot <- rbind(table.noise,table.noise.sample)
table.noise.tot$Type <- factor(table.noise.tot$Type)

ggplot(table.noise.tot, aes(x=as.factor(N), y=TT,fill=Type)) +
geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=TT-sampling.noise/2, ymax=TT+sampling.noise/2), width=.2,position=position_dodge(.9),color='red') +
xlab("Sample Size")+
theme_bw()+
theme(legend.position=c(0.85,0.88))
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Figure 2.4: Sampling noise of ˆWW (99% confidence) around TT and TTs for
various sample sizes

Figure 2.3 and Table 2.2 present the results of the simulations of sampling noise
for the sample treatment effect parameter. Figure 2.4 compares sampling noise
for the population and sample treatment effects.
For all practical purposes, the estimates of sampling noise for the sample treat-
ment effect are extremely close to the ones we have estimated for the population
treatment effect. I am actually surprised by this result, since I expected that
keeping the potential outcomes constant over replications would decrease sam-
pling noise. It seems that the variability in potential outcomes over replications
of random allocations of the treatment in a given sample mimicks very well the
sampling process from a population. I do not know if this result of similarity of
sampling noise for the population and sample treatment effect is a general one,
but considering them as similar or close seems innocuous in our example.
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2.1.4 Building confidence intervals from estimates of sam-
pling noise

In real life, we do not observe TT . We only have access to Ê. Let’s also assume
for now that we have access to an estimate of sampling noise, 2ε. How can we
use these two quantities to assess the set of values that TT might take? One
very useful device that we can use is the confidence interval. Confidence intervals
are very useful because they quantify the zone within which we have a chance to
find the true effect TT :

Theorem 2.1 (Confidence interval). For a given level of confidence δ and
corresponding level of sampling noise 2ε of the estimator Ê of TT , the confidence
interval

{
Ê − ε, Ê + ε

}
is such that the probability that it contains TT is equal

to δ over sample replications:

Pr(Ê − ε ≤ TT ≤ Ê + ε) = δ.

Proof. From the definition of sampling noise, we know that:

Pr(|Ê − TT | ≤ ε) = δ.

Now:

Pr(|Ê − TT | ≤ ε) = Pr(TT − ε ≤ Ê ≤ TT + ε)
= Pr(−Ê − ε ≤ −TT ≤ −Ê + ε)
= Pr(Ê − ε ≤ TT ≤ Ê + ε),

which proves the result.

It is very important to note that confidence intervals are centered around Ê
and not around TT . When estimating sampling noise and building Figure 2.2,
we have centered our intervals around TT . The interval was fixed and Ê was
moving across replications and 2ε was defined as the length of the interval around
TT containing a proportion δ of the estimates Ê. A confidence interval cannot
be centered around TT , which is unknown, but is centered around Ê, that we
can observe. As a consequence, it is the interval that moves around across
replications, and δ is the proportion of samples in which the interval contains
TT .

Example 2.3. Let’s see how confidence intervals behave in our numerical
example.
N.plot <- 40
plot.list <- list()

for (k in 1:length(N.sample)){
set.seed(1234)
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test <- sample(simuls.ww[[k]][,'WW'],N.plot)
test <- as.data.frame(cbind(test,rep(samp.noise(simuls.ww[[k]][,'WW'],delta=delta)),rep(samp.noise(simuls.ww[[k]][,'WW'],delta=delta.2))))
colnames(test) <- c('WW','sampling.noise.1','sampling.noise.2')
test$id <- 1:N.plot
plot.test <- ggplot(test, aes(x=as.factor(id), y=WW)) +

geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=WW-sampling.noise.1/2, ymax=WW+sampling.noise.1/2), width=.2,position=position_dodge(.9),color='red') +
geom_errorbar(aes(ymin=WW-sampling.noise.2/2, ymax=WW+sampling.noise.2/2), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=delta.y.ate(param)), colour="#990000", linetype="dashed")+
#ylim(-0.5,1.2)+
xlab("Sample id")+
theme_bw()+
ggtitle(paste("N=",N.sample[k]))

plot.list[[k]] <- plot.test
}
plot.CI <- plot_grid(plot.list[[1]],plot.list[[2]],plot.list[[3]],plot.list[[4]],ncol=1,nrow=length(N.sample))
print(plot.CI)
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Figure 2.5: Confidence intervals of ˆWW for δ = 0.99 (red) and 0.95 (blue) over
sample replications for various sample sizes

Figure 2.5 presents the 99% and 95% confidence intervals for 40 samples selected
from our simulations. First, confidence intervals do their job: they contain the
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true effect most of the time. Second, the 95% confidence interval misses the true
effect more often, as expected. For example, with N = 1000, the confidence
intervals in samples 13 and 23 do not contain the true effect, but it is not far
from their lower bound. Third, confidence intervals faithfully reflect what we
can learn from our estimates at each sample size. With N = 100, the confidence
intervals make it clear that the effect might be very large or very small, even
strongly negative. With N = 1000, the confidence intervals suggest that the
effect is either positive or null, but unlikely to be strongly negative. Most of
the time, we get the sign right. With N = 104, we know that the true effect
is bigger than 0.1 and smaller than 0.3 and most intervals place the true effect
somewhere between 0.11 and 0.25. With N = 105, we know that the true effect
is bigger than 0.15 and smaller than 0.21 and most intervals place the true effect
somewhere between 0.16 and 0.20.

2.1.5 Reporting sampling noise: a proposal
Once sampling noise is measured (and we’ll see how to get an estimate in the
next section), one still has to communicate it to others. There are many ways to
report sampling noise:

• Sampling noise as defined in this book (2 ∗ ε)
• The corresponding confidence interval
• The signal to noise ratio
• A standard error
• A significance level
• A p-value
• A t-statistic

The main problem with all of these approaches is that they do not express
sampling noise in a way that is directly comparable to the magnitude of the TT
estimate. Other ways of reporting sampling noise such as p-values and t-stats
are nonlinear transforms of sampling noise, making it difficult to really gauge
the size of sampling noise as it relates to the magnitude of TT .

My own preference goes to the following format for reporting results: TT ± ε. As
such, we can readily compare the size of the noise to the sizee of the TT estimate.
We can also form all the other ways of expressing sampling noise directly.

Example 2.4. Let’s see how this approach behaves in our numerical example.
test.all <- list()
for (k in 1:length(N.sample)){
set.seed(1234)
test <- sample(simuls.ww[[k]][,'WW'],N.plot)
test <- as.data.frame(cbind(test,rep(samp.noise(simuls.ww[[k]][,'WW'],delta=delta)),rep(samp.noise(simuls.ww[[k]][,'WW'],delta=delta.2))))
colnames(test) <- c('WW','sampling.noise.1','sampling.noise.2')
test$id <- 1:N.plot
test.all[[k]] <- test
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}

With N = 100, the reporting of the results for sample 1 would be something like:
“we find an effect of 0.37 ± 0.55.” Note how the choice of δ does not matter much
for the result. The previous result was for δ = 0.99 while the result for δ = 0.95
would have been: “we find an effect of 0.37 ± 0.45.” The precise result changes
with δ, but the qualitative result stays the same: the magnitude of sampling
noise is large and it dwarfs the treatment effect estimate.

With N = 1000, the reporting of the results for sample 1 with δ = 0.99 would
be something like: “we find an effect of 0.25 ± 0.2.” With δ = 0.95: “we find an
effect of 0.25 ± 0.15.” Again, although the precise quantitative result is affected
by the choice of δ, but hte qualitative message stays the same: sampling noise is
of the same order of magnitude as the estimated treatment effect.

With N = 104, the reporting of the results for sample 1 with δ = 0.99 would be
something like: “we find an effect of 0.19 ± 0.06.” With δ = 0.95: “we find an
effect of 0.19 ± 0.04.” Again, see how the qualitative result is independent of
the precise choice of δ: sampling noise is almost one order of magnitude smaller
than the treatment effect estimate.

With N = 105, the reporting of the results for sample 1 with δ = 0.99 would be
something like: “we find an effect of 0.18 ± 0.02.” With δ = 0.95: “we find an
effect of 0.18 ± 0.01.” Again, see how the qualitative result is independent of
the precise choice of δ: sampling noise is one order of magnitude smaller than
the treatment effect estimate.

Remark. What I hope the example makes clear is that my proposed way of
reporting results gives the same importance to sampling noise as it gives to the
treatment effect estimate. Also, comparing them is easy, without requiring a
huge computational burden on our brain.

Remark. One problem with the approach that I propose is when you have a
non-symetric distribution of sampling noise, or when TT ± ε exceeds natural
bounds on TT (such as if the effect cannot be bigger than one, for example).
I think these issues are minor and rare and can be dealt with on a case by
case basis. The advantage of having one simple and directly readable number
comparable to the magnitude of the treatment effect is overwhelming and makes
this approach the most natural and adequate, in my opinion.

2.1.6 Using effect sizes to normalize the reporting of treat-
ment effects and their precision

When looking at the effect of a program on an outcome, we depend on the scaling
on that outcome to appreciate the relative size of the estimated treatment effect.
It is often difficult to appreciate the relative importance of the size of an effect,
even if we know the scale of the outcome of interest. One useful device to
normalize the treatment effects is called Cohen’s d, or effect size. The idea is
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to compare the magnitude of the treatment effect to an estimate of the usual
amount of variation that the outcome undergoes in the population. The way to
build Cohen’s d is by dividing the estimated treatment effect by the standard
deviation of the outcome. I generally prefer to use the standard devaition of the
outcome in the control group, so as not to include the additional amoiunt of
variation due to the heterogeneity in treatment effects.

Definition 2.2 (Cohen’s d). Cohen’s d, or effect size, is the ratio of the estimated
treatment effect to the standard deviation of outcomes in the control group:

d = T̂ T√
1
N0

∑N0

i=1(Yi − Ȳ 0)2

where T̂ T is an estimate of the treatment effect, N0 is the number of individuals
in the treatment group and Ȳ 0 is the average outcome in the treatment group.

Cohen’s d can be interpreted in terms of magnitude of effect size:

• It is generally considered that an effect is large when its d is larger than
0.8.

• An effect size around 0.5 is considered medium
• An effect size around 0.2 is considered to be small
• An effect size around 0.02 is considered to be very small.

There probably could be a rescaling of these terms, but that is the actual state
of the art.

What I like about effect sizes is that they encourage an interpretation of the
order of magnitude of the treatment effect. As such, they enable to include the
information on precision by looking at which orders of magnitude are compatible
with the estimated effect at the estimated precision level. Effect sizes and orders
of magnitude help make us aware that our results might be imprecise, and that
the precise value that we have estimated is probably not the truth. What is
important is the range of effect sizes compatible with our results (both point
estimate and precision).

Example 2.5. Let’s see how Cohen’s d behaves in our numerical example.

The value of Cohen’s d (or effect size) in the population is equal to:

ES = TT√
V 0

= ᾱ+ θµ̄√
σ2
µ + ρ2σ2

U + σ2
ε

We can write a function to compute this parameter, as well as functions to
implement its estimator in the simulated samples:
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V0 <- function(param){
return(param["sigma2mu"]+param["rho"]ˆ2*param["sigma2U"]+param["sigma2epsilon"])

}

ES <- function(param){
return(delta.y.ate(param)/sqrt(V0(param)))

}

samp.noise.ES <- function(estim,delta,param=param){
return(2*quantile(abs(delta.y.ate(param)/sqrt(V0(param))-estim),prob=delta))

}

for (i in 1:4){
simuls.ww[[i]][,'ES'] <- simuls.ww[[i]][,'WW']/sqrt(simuls.ww[[i]][,'V0'])

}

The true effect size in the population is thus 0.2. It is considered to be small
according to the current classification, although I’d say that a treatment able
to move the outcomes by 20% of their usual variation is a pretty effective
treatment, and this effect should be labelled at least medium. Let’s stick with
the classification though. In our example, the effect size does not differ much
from the treatment effect since the standard deviation of outcomes in the control
group is pretty close to one: it is equal to 0.88. Let’s now build confidence
intervals for the effect size and try to comment on the magnitudes of these effects
using the normalized classification.
N.plot.ES <- 40
plot.list.ES <- list()

for (k in 1:length(N.sample)){
set.seed(1234)
test.ES <- sample(simuls.ww[[k]][,'ES'],N.plot)
test.ES <- as.data.frame(cbind(test.ES,rep(samp.noise.ES(simuls.ww[[k]][,'ES'],delta=delta,param=param)),rep(samp.noise.ES(simuls.ww[[k]][,'ES'],delta=delta.2,param=param))))
colnames(test.ES) <- c('ES','sampling.noise.ES.1','sampling.noise.ES.2')
test.ES$id <- 1:N.plot.ES
plot.test.ES <- ggplot(test.ES, aes(x=as.factor(id), y=ES)) +

geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=ES-sampling.noise.ES.1/2, ymax=ES+sampling.noise.ES.1/2), width=.2,position=position_dodge(.9),color='red') +
geom_errorbar(aes(ymin=ES-sampling.noise.ES.2/2, ymax=ES+sampling.noise.ES.2/2), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=ES(param)), colour="#990000", linetype="dashed")+
#ylim(-0.5,1.2)+
xlab("Sample id")+
ylab("Effect Size")+
theme_bw()+
ggtitle(paste("N=",N.sample[k]))

plot.list.ES[[k]] <- plot.test.ES
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}
plot.CI.ES <- plot_grid(plot.list.ES[[1]],plot.list.ES[[2]],plot.list.ES[[3]],plot.list.ES[[4]],ncol=1,nrow=length(N.sample))
print(plot.CI.ES)
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Figure 2.6: Confidence intervals of ÊS for δ = 0.99 (red) and 0.95 (blue) over
sample replications for various sample sizes

Figure 2.6 presents the 99% and 95% confidence intervals for the effect size
estimated in 40 samples selected from our simulations. Let’s regroup our estimate
and see how we could present their results.
test.all.ES <- list()
for (k in 1:length(N.sample)){
set.seed(1234)
test.ES <- sample(simuls.ww[[k]][,'ES'],N.plot)
test.ES <- as.data.frame(cbind(test.ES,rep(samp.noise.ES(simuls.ww[[k]][,'ES'],delta=delta,param=param)),rep(samp.noise.ES(simuls.ww[[k]][,'ES'],delta=delta.2,param=param))))
colnames(test.ES) <- c('ES','sampling.noise.ES.1','sampling.noise.ES.2')
test.ES$id <- 1:N.plot.ES
test.all.ES[[k]] <- test.ES

}

With N = 100, the reporting of the results for sample 1 would be something like:
“we find an effect size of 0.44 ± 0.66” with δ = 0, 99. With δ = 0.95 we would
say: “we find an effect of 0.44 ± 0.5.” All in all, our estimate is compatible with
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the treatment having a large positive effect size and a medium negative effect
size. Low precision prevents us from saying much else.

With N = 1000, the reporting of the results for sample 1 with δ = 0.99 would
be something like: “we find an effect size of 0.28 ± 0.22.” With δ = 0.95: “we
find an effect size of 0.28 ± 0.17.” Our estimate is compatible with a medium
positive effect or a very small positive or even negative effect (depending on the
choice of δ).

With N = 104, the reporting of the results for sample 1 with δ = 0.99 would be
something like: “we find an effect size of 0.22 ± 0.07.” With δ = 0.95: “we find
an effect size of 0.22 ± 0.05.” Our estimate is thus compatible with a small effect
of the treatment. We can rule out that the effect of the treatment is medium
since the upper bound of the 99% confidence interval is equal to 0.28. We can
also rule out that the effect of the treatment is very small since the lower bound
of the 99% confidence interval is equal to 0.15. With this sample size, we have
been able to reach a precision level sufficient enough to pin down the order of
magnitude of the effect size of our treatment. There still remains a considerable
amount of uncertainty about the true effect size, though: the upper bound of
our confidence interval is almost double the lower bound.

With N = 105, the reporting of the results for sample 1 with δ = 0.99 would be
something like: “we find an effect size of 0.2 ± 0.02.” With δ = 0.95: “we find
an effect size of 0.2 ± 0.02.” Here, the level of precision of our result is such that,
first, it does not depend on the choice of δ in any meaningful way, and second,
we can do more than pinpoint the order of magnitude of the effect size, we can
start to zero in on its precise value. From our estimate, the true value of the
effect size is really close to 0.2. It could be equal to 0.18 or 0.22, but not further
away from 0.2 than that. Remember that is actually equal to 0.2.

Remark. One issue with Cohen’s d is that its magnitude depends on the dispersion
of the outcomes in the control group. That means that for the same treatment,
and same value of the treatment effect, the effect size is larger in a population
where oucomes are more homogeneous. This is not an attractive feature of
a normalizing scale that its size depends on the particular application. One
solution would be, for each outcome, to provide a standardized scale, using for
example the estmated standard deviation in a reference population. This would
be similar to the invention of the metric system, where a reference scale was
agreed uppon once and for all.

Remark. Cohen’s d is well defined for continuous outcomes. For discrete outcomes,
the use of Cohen’s d poses a series of problems, and alternatives such as relative
risk ratios and odds ratios have been proposed. I’ll comment on that in the last
chapter.
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2.2 Estimating sampling noise
Gauging the extent sampling noise is very useful in order to be able to determine
how much we should trust our results. Are they precise, so that the true
treatment effect lies very close to our estimate? Or are our results imprecise,
the true treatment effect maybe lying very far from our estimate?

Estimating sampling noise is hard because we want to infer a property of our
estimator over repeated samples using only one sample. In this lecture, I am
going to introduce four tools that enable you to gauge sampling noise and to
choose sample size. The four tools are Chebyshev’s inequality, the Central Limit
Theorem, resampling methods and Fisher’s permutation method. The idea of all
these methods is to use the properties of the sample to infer the properties of our
estimator over replications. Chebyshev’s inequality gives an upper bound on the
sampling noise and a lower bound on sample size, but these bounds are generally
too wide to be useful. The Central Limit Theorem (CLT) approximates the
distribution of Ê by a normal distribution, and quantifies sampling noise as a
multiple of the standard deviation. Resampling methods use the sample as a
population and draw new samples from it in order to approximate sampling
noise. Fisher’s permutation method, also called randomization inference, derives
the distribution of Ê under the assumption that all treatment effects are null,
by reallocating the treatment indicator among the treatment and control group.
Both the CLT and resampling methods are approximation methods, and their
approximation of the true extent of sampling noise gets better and better
as sample size increases. Fisher’s permutation method is exact-it is not an
approximation-but it only works for the special case of the WW estimator in a
randomized design.

The remaining of this section is structured as follows. Section 2.2.1 introduces
the assumptions that we will need in order to implement the methods. Section
2.2.2 presents the Chebyshev approach to gauging sampling noise and choosing
sample size. Section 2.2.3 introduces the CLT way of approximating sampling
noise and choosing sample size. Section 2.2.4 presents the resampling methods.

Remark. I am going to derive the estimators for the precision only for the WW
estimator. In the following lectures, I will show how these methods adapt to
other estimators.

2.2.1 Assumptions
In order to be able to use the theorems that power up the methods that we are
going to use to gauge sampling noise, we need to make some assumptions on the
properties of the data. The main assumptions that we need are that the estimator
identifies the true effect of the treatment in the population, that the estimator is
well-defined in the sample, that the observations in the sample are independently
and identically distributed (i.i.d.), that there is no interaction between units and
that the variances of the outcomes in the treated and untreated group are finite.
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We know from last lecture that for the WW estimator to identify TT , we need
to assume that there is no selection bias, as stated in Assumption 1.7. One way
to ensure that this assumption holds is to use a RCT.

In order to be able to form the WW estimator in the sample, we also need that
there is at least one treated and one untreated in the sample:

Hypothesis 2.1 (Full rank). We assume that there is at least one observation
in the sample that receives the treatment and one observation that does not
receive it:

∃i, j ≤ N such that Di = 1&Dj = 0.

One way to ensure that this assumption holds is to sample treated and untreated
units.

In order to be able to estimate the variance of the estimator easily, we assume
that the observations come from random sampling and are i.i.d.:

Hypothesis 2.2 (i.i.d. sampling). We assume that the observations in the
sample are identically and independently distributed:

∀i, j ≤ N , i 6= j, (Yi, Di) ⊥⊥ (Yj , Dj),
(Yi, Di)&(Yj , Dj) ∼ FY,D.

We have to assume something on how the observations are related to each other
and to the population. Identical sampling is natural in the sense that we are
OK to assume that the observations stem from the same population model.
Independent sampling is something else altogether. Independence means that
the fates of two closely related individuals are assumed to be independent. This
rules out two empirically relevant scenarios:

1. The fates of individuals are related because of common influences, as for
example the environment, etc,

2. The fates of individuals are related because they directly influence each
other, as for example on a market, but also for example because there are
diffusion effects, such as contagion of deseases or technological adoption
by imitation.

We will address both sources of failure of the independence assumption in future
lectures.

Finally, in order for all our derivations to make sense, we need to assume that
the outcomes in both groups have finite variances, otherwise sampling noise is
going to be too extreme to be able to estimate it using the methods developed
in this lecture:

Hypothesis 2.3 (Finite variance of ˆ∆Y
WW ). We assume that V[Y 1|Di = 1] and

V[Y 0|Di = 0] are finite.
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2.2.2 Using Chebyshev’s inequality
Chebyshev’s inequality is a fundamental building block of statistics. It relates
the sampling noise of an estimator to its variance. More precisely, it derives an
upper bound on the samplig noise of an unbiased estimator:

Theorem 2.2 (Chebyshev’s inequality). For any unbiased estimator θ̂, sampling
noise level 2ε and confidence level δ, sampling noise is bounded from above:

2ε ≤ 2

√
V[θ̂]
1− δ .

Remark. The more general version of Chebyshev’s inequality that is generally
presented is as follows:

Pr(|θ̂ − E[θ̂]| > ε) ≤ V[θ̂]
ε2

.

The version I present in Theorem 2.2 is adapted to the bouding of sampling
noise for a given confidence level, while this version is adapted to bounding the
confidence level for a given level of sampling noise. In order to go from this
general version to Theorem 2.2, simply remember that, for an unbiased estimator,
E[θ̂] = θ and that, by definition of sampling noise, Pr(|θ̂ − θ| > ε) = 1− δ. As a
result, 1− δ ≤ V[θ̂]/ε2, hence the result in Theorem 2.2.

Using Chebyshev’s inequality, we can obtain an upper bound on the sampling
noise of the WW estimator:

Theorem 2.3 (Upper bound on the sampling noise of ˆWW ). Under Assumptions
1.7, 2.1 and 2.2, for a given confidence level δ, the sampling noise of the ˆWW
estimator is bounded from above:

2ε ≤ 2

√
1

N(1− δ)

(
V[Y 1

i |Di = 1]
Pr(Di = 1) + V[Y 0

i |Di = 0]
1− Pr(Di = 1)

)
≡ 2ε̄.

Proof. See in Appendix A.1.1

Theorem 2.3 is a useful step forward for estimating sampling noise. Theorem 2.3
states that the actual level of sampling noise of the ˆWW estimator (2ε) is never
bigger than a quantity that depends on sample size, confidence level and on the
variances of outcomes in the treated and control groups. We either know all the
components of the formula for 2ε̄ or we can estimate them in the sample. For
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example, Pr(Di = 1), V[Y 1
i |Di = 1] and V[Y 0

i |Di = 0] by can be approximated
by, respectively:

ˆPr(Di = 1) = 1
N

N∑
i=1

Di

ˆV[Y 1
i |Di = 1] = 1∑N

i=1Di

N∑
i=1

Di(Yi −
1∑N

i=1Di

N∑
i=1

DiYi)2

ˆV[Y 0
i |Di = 0] = 1∑N

i=1(1−Di)

N∑
i=1

(1−Di)(Yi −
1∑N

i=1(1−Di)

N∑
i=1

(1−Di)Yi)2.

Using these approximations for the quantities in the formula, we can compute
an estimate of the upper bound on sampling noise, 2̂ε̄.

Example 2.6. Let’s write an R function that is going to compute an estimate
for the upper bound of sampling noise for any sample:
samp.noise.ww.cheb <- function(N,delta,v1,v0,p){
return(2*sqrt((v1/p+v0/(1-p))/(N*(1-delta))))

}

Let’s estimate this upper bound in our usual sample:
set.seed(1234)
N <-1000
delta <- 0.99
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
V <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]+param["sigma2U"]))
Ds[V<=log(param["barY"])] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)

In our sample, for δ = 0.99, 2̂ε̄ = 1.35. How does this compare with the true
extent of sampling noise when N = 1000? Remember that we have computed
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an estimate of sampling noise out of our Monte Carlo replications. In Table 2.2,
we can read that sampling noise is actually equal to 0.39. The Chebyshev upper
bound overestimates the extent of sampling noise by 245%.

How does the Chebyshev upper bound fares overall? In order to know that,
let’s compute the Chebyshev upper bound for all the simulated samples. You
might have noticed that, when running the Monte Carlo simulations for the
population parameter, I have not only recovered ˆWW for each sample, but also
the estimates of the components of the formula for the upper bound on sampling
noise. I can thus easily compute the Chebyshev upper bound on sampling noise
for each replication.
for (k in (1:length(N.sample))){
simuls.ww[[k]]$cheb.noise <- samp.noise.ww.cheb(N.sample[[k]],delta,simuls.ww[[k]][,'V1'],simuls.ww[[k]][,'V0'],simuls.ww[[k]][,'p'])

}
par(mfrow=c(2,2))
for (i in 1:4){
hist(simuls.ww[[i]][,'cheb.noise'],main=paste('N=',as.character(N.sample[i])),xlab=expression(hat(2*bar(epsilon))),xlim=c(0.25*min(simuls.ww[[i]][,'cheb.noise']),max(simuls.ww[[i]][,'cheb.noise'])))
abline(v=table.noise[i,colnames(table.noise)=='sampling.noise'],col="red")

}
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Figure 2.7: Distribution of the Chebyshev upper bound on sampling noise over
replications of samples of different sizes (true sampling noise in red)

Figure 2.7 shows that the upper bound works: it is always bigger than the true
sampling noise. Figure 2.7 also shows that the upper bound is large: it generally
is of an order of magnitude bigger than the true sampling noise, and thus offers a
blurry and too pessimistic view of the precision of an estimator. Figure 2.8 shows
that the average Chebyshev bound gives an inflated estimate of sampling noise.
Figure 2.9 shows that the Chebyshev confidence intervals are clearly less precise
than the true unknown ones. With N = 1000, the true confidence intervals
generally reject large negative effects, whereas the Chebyshev confidence intervals
do not rule out this possibility. With N = 104, the true confidence intervals
generally reject effects smaller than 0.1, whereas the Chebyshev confidence
intervals cannot rule out small negative effects.
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As a conclusion on Chebyshev estimates of sampling noise, their advantage is
that they offer an upper bound on the noise: we can never underestimate noise
if we use them. A downside of Chebyshev sampling noise estimates is their low
precision, which makes it hard to pinpoint the true confidence intervals.
for (k in (1:length(N.sample))){
table.noise$cheb.noise[k] <- mean(simuls.ww[[k]]$cheb.noise)

}
ggplot(table.noise, aes(x=as.factor(N), y=TT)) +
geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=TT-sampling.noise/2, ymax=TT+sampling.noise/2), width=.2,position=position_dodge(.9),color='red') +
geom_errorbar(aes(ymin=TT-cheb.noise/2, ymax=TT+cheb.noise/2), width=.2,position=position_dodge(.9),color='blue') +
xlab("Sample Size")+
theme_bw()
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Figure 2.8: Average Chebyshev upper bound on sampling noise over replications
of samples of different sizes (true sampling noise in red)

N.plot <- 40
plot.list <- list()

for (k in 1:length(N.sample)){
set.seed(1234)
test.cheb <- simuls.ww[[k]][sample(N.plot),c('WW','cheb.noise')]
test.cheb <- as.data.frame(cbind(test.cheb,rep(samp.noise(simuls.ww[[k]][,'WW'],delta=delta),N.plot)))
colnames(test.cheb) <- c('WW','cheb.noise','sampling.noise')
test.cheb$id <- 1:N.plot
plot.test.cheb <- ggplot(test.cheb, aes(x=as.factor(id), y=WW)) +

geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=WW-sampling.noise/2, ymax=WW+sampling.noise/2), width=.2,position=position_dodge(.9),color='red') +
geom_errorbar(aes(ymin=WW-cheb.noise/2, ymax=WW+cheb.noise/2), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=delta.y.ate(param)), colour="#990000", linetype="dashed")+
xlab("Sample id")+
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theme_bw()+
ggtitle(paste("N=",N.sample[k]))

plot.list[[k]] <- plot.test.cheb
}
plot.CI <- plot_grid(plot.list[[1]],plot.list[[2]],plot.list[[3]],plot.list[[4]],ncol=1,nrow=length(N.sample))
print(plot.CI)
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Figure 2.9: Chebyshev confidence intervals of ˆWW for δ = 0.99 over sample
replications for various sample sizes (true confidence intervals in red)

2.2.3 Using the Central Limit Theorem
The main problem with Chebyshev’s upper bound on sampling noise is that it is
an upper bound, and thus it overestimates sampling noise and underestimates
precision. One alternative to using Chebyshev’s upper bound is to use the
Central Limit Theorem (CLT). In econometrics and statistics, the CLT is used
to derive approximate values for the sampling noise of estimators. Because these
approximations become more and more precise as sample size increases, we call
them asymptotic approximations.

Taken to its bare bones, the CLT states that the sum of i.i.d. random variables
behaves approximately like a normal distribution when the sample size is large:

Theorem 2.4 (Central Limit Theorem). Let Xi be i.i.d. random variables with
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E[Xi] = µ and V[Xi] = σ2, and define ZN =
1
N

∑N

i=1
Xi−µ

σ√
N

, then, for all z we
have:

lim
N→∞

Pr(ZN ≤ z) = Φ(z),

where Φ is the cumulative distribution function of the centered standardized
normal.

We say that ZN converges in distribution to a standard normal random variable,
and we denote: ZN

d→ N (0, 1).

The CLT is a beautiful result: the distribution of the average of realisations of
any random variable that has finite mean and variance can be approximated by
a normal when the sample size is large enough. The CLT is somehow limited
though because not all estimators are sums. Estimators are generally more or less
complex combinations of sums. In order to derive the asymptotic approximation
for a lot of estimators that are combinations of sums, econometricians and
statisticians complement the CLT with two other extremely powerful tools:
Slutsky’s theorem and the Delta method. Slutsky’s theorem states that sums,
products and ratios of sums that converge to a normal converge to the sum,
product or ratio of these normals. The Delta method states that a function
of a sum that converges to a normal converges to a normal whose variance is
a quadratic form of the variance of the sum and of the first derivative of the
function. Both of these tools are stated more rigorously in the appendix, but
you do not need to know them for this class. The idea is for you to be aware
of how the main approximations that we are going to use throughout this class
have been derived.

Let me now state the main result of this section:

Theorem 2.5 (Asymptotic Estimate of Sampling Noise of WW). Under As-
sumptions 1.7, 2.1, 2.2 and 2.3, for a given confidence level δ and sample size
N , the sampling noise of ˆWW can be approximated as follows:

2ε ≈ 2Φ−1
(
δ + 1

2

)
1√
N

√
V[Y 1

i |Di = 1]
Pr(Di = 1) + V[Y 0

i |Di = 0]
1− Pr(Di = 1) ≡ 2ε̃.

Proof. See in Appendix A.1.2.

Let’s write an R function that computes this formula:
samp.noise.ww.CLT <- function(N,delta,v1,v0,p){
return(2*qnorm((delta+1)/2)*sqrt((v1/p+v0/(1-p))/N))

}



2.2. ESTIMATING SAMPLING NOISE 73

Example 2.7. Let’s see how the CLT performs in our example.

In our sample, for δ = 0.99, the CLT estimate of sampling noise is 2̂ε̃ = 0.35.
How does this compare with the true extent of sampling noise when N = 1000?
Remember that we have computed an estimate of sampling noise out of our Monte
Carlo replications. In Table 2.1, we can read that sampling noise is actually
equal to 0.39. The CLT approximation is pretty precise: it only underestimates
the true extent of sampling noise by 11%.

We can also compute the CLT approximation to sampling noise in all of our
samples:
for (k in (1:length(N.sample))){
simuls.ww[[k]]$CLT.noise <- samp.noise.ww.CLT(N.sample[[k]],delta,simuls.ww[[k]][,'V1'],simuls.ww[[k]][,'V0'],simuls.ww[[k]][,'p'])

}
par(mfrow=c(2,2))
for (i in 1:4){
hist(simuls.ww[[i]][,'CLT.noise'],main=paste('N=',as.character(N.sample[i])),xlab=expression(hat(2*bar(epsilon))),xlim=c(min(simuls.ww[[i]][,'CLT.noise']),max(simuls.ww[[i]][,'CLT.noise'])))
abline(v=table.noise[i,colnames(table.noise)=='sampling.noise'],col="red")

}
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Figure 2.10: Distribution of the CLT approximation of sampling noise over
replications of samples of different sizes (true sampling noise in red)

Figure 2.10 shows that the CLT works: CLT-based estimates of sampling noise
approximates true sampling noise well. CLT-based approximations of sampling
noise are even impressively accurate: they always capture the exact order of
magnitude of sampling noise, although there is a slight underestimation when
N = 1000 and 104 and a slight overestimation when N = 105. This success
should not come as a surprise as all shocks in our model are normally distributed,
meaning that the CLT results are more than an approximation, they are exact.
Results might be less spectacular when estimating the effect of the treatment on
the outcomes in levels rather than in logs.

As a consequence, the average CLT-based estimates of sampling noise and of
confidence intervals are pretty precise, as Figures 2.11 and 2.12 show. Let’s
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pause for a second at the beauty of what we have achieved using the CLT: by
using only information from one sample, we have been able to gauge extremely
precisely how the estimator would behave over sampling repetitions.
for (k in (1:length(N.sample))){
table.noise$CLT.noise[k] <- mean(simuls.ww[[k]]$CLT.noise)

}
ggplot(table.noise, aes(x=as.factor(N), y=TT)) +
geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=TT-sampling.noise/2, ymax=TT+sampling.noise/2), width=.2,position=position_dodge(.9),color='red') +
geom_errorbar(aes(ymin=TT-CLT.noise/2, ymax=TT+CLT.noise/2), width=.2,position=position_dodge(.9),color='blue') +
xlab("Sample Size")+
theme_bw()
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Figure 2.11: Average CLT-based approximations of sampling noise over replica-
tions of samples of different sizes (true sampling noise in red)

N.plot <- 40
plot.list <- list()

for (k in 1:length(N.sample)){
set.seed(1234)
test.CLT <- simuls.ww[[k]][sample(N.plot),c('WW','CLT.noise')]
test.CLT <- as.data.frame(cbind(test.CLT,rep(samp.noise(simuls.ww[[k]][,'WW'],delta=delta),N.plot)))
colnames(test.CLT) <- c('WW','CLT.noise','sampling.noise')
test.CLT$id <- 1:N.plot
plot.test.CLT <- ggplot(test.CLT, aes(x=as.factor(id), y=WW)) +

geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=WW-sampling.noise/2, ymax=WW+sampling.noise/2), width=.2,position=position_dodge(.9),color='red') +
geom_errorbar(aes(ymin=WW-CLT.noise/2, ymax=WW+CLT.noise/2), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=delta.y.ate(param)), colour="#990000", linetype="dashed")+
xlab("Sample id")+
theme_bw()+



2.2. ESTIMATING SAMPLING NOISE 75

ggtitle(paste("N=",N.sample[k]))
plot.list[[k]] <- plot.test.CLT

}
plot.CI <- plot_grid(plot.list[[1]],plot.list[[2]],plot.list[[3]],plot.list[[4]],ncol=1,nrow=length(N.sample))
print(plot.CI)
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Figure 2.12: CLT-based confidence intervals of ˆWW for δ = 0.99 over sample
replications for various sample sizes (true confidence intervals in red)

Remark. In proving the main result on the asymptotic distribution of ˆWW , we
have also proved a very useful result: ˆWW is the Ordinary Least Squares (OLS)
estimator of β in the regression Yi = α+ βDi + Ui. This is pretty cool since we
now can use our classical OLS estimator in our statistical package to estimate

ˆWW . Let’s compute the OLS estimate of WW in our sample:
ols.ww <- lm(y~Ds)
ww.ols <- ols.ww$coef[[2]]

We have ˆWWOLS = 0.13 = 0.13 = ˆWW .

Remark. Another pretty cool consequence of Theorem 2.5 and of its proof is that
the standard error of the OLS estimator of ˆWW (σβ) is related to the sampling
noise of ˆWW by the following formula: 2ε̃ = 2Φ−1 ( δ+1

2
)
σβ .

This implies that sampling noise is equal to 5 σβ when δ = 0.99 and to 4 σβ
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when δ = 0.95. It is thus very easy to move from estimates of the standard error
of the β coefficient to the extent of sampling noise.

Remark. A last important consequence of Theorem 2.5 and of its proof is
that the standard error of the OLS estimator of ˆWW (σβ) that we use is the
heteroskedasticity-robust one.

Using the RCM, we can indeed show that:

α = E[Y 0
i |Di = 0]

β = ∆Y
TT

Ui = Y 0
i − E[Y 0

i |Di = 0] +Di(∆Y
i −∆Y

TT ),

Under Assumption 1.7, we have:

Ui = (1−Di)(Y 0
i − E[Y 0

i |Di = 0]) +Di(Y 1
i − E[Y 1

i |Di = 1])

There is heteroskedasticity because the outcomes of the treated and of the
untreated have different variances:

V[Ui|Di = d] = E[U2
i |Di = d]

= E[(Y di − E[Y di |Di = d])2|Di = d]
= V[Y di |Di = d]

We do not want to assume homoskedasticity, since it would imply a constant
treatment effect. Indeed, V[Y 1

i |Di = 1] = V[Y 0
i |Di = 1] + V[αi|Di = 1].

Remark. In order to estimate the heteroskedasticity robust standard error from
the OLS regression, we can use the sandwich package in R Most available
heteroskedasticity robust estimators based on the CLT can be written in the
following way:

V[Θ̂OLS ] ≈ (X ′X)−1X ′Ω̂X(X ′X)−1,

where X is the matrix of regressors and Ω̂ = diag(σ̂2
U1
, . . . , σ̂2

UN
) is an estimate

the covariance matrix of the residuals Ui. Here are various classical estimators
for Ω̂:
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HC0: ˆσUi
2 = Ûi

2

HC1: ˆσUi
2 = N

N −K
Ûi

2

HC2: ˆσUi
2 = Ûi

2

1− hi

HC3: ˆσUi
2 = Ûi

2

(1− hi)2 ,

where Ûi is the residual from the OLS regression, K is the number of regressors,
hi is the leverage of observation i, and is the ith diagonal element of H =
X(X ′X)−1X ′. HC1 is the one reported by Stata when using the ‘robust’ option.

Example 2.8. Using the sandwich package, we can estimate the
heteroskedasticity-robust variance-covariance matrix and sampling noise
as follows:
ols.ww.vcov.HC0 <- vcovHC(ols.ww, type = "HC0")
samp.noise.ww.CLT.ols <- function(delta,reg,...){
return(2*qnorm((delta+1)/2)*sqrt(vcovHC(reg,...)[2,2]))

}

For δ = 0.99, sampling noise estimated using the “HC0” option is equal to 0.35.
This is exactly the value we have estimated using our CLT-based formula (2̂ε̃ =
0.35). Remember that sampling noise is actually equal to 0.39. Other “HC”
options might be better in small samples. For example, with the “HC1” option,
we have an estimate for sampling noise of 0.35. What would have happened to
our estimate of sampling noise if we had ignored heteroskedasticity? The default
OLS standard error estimate yields an estimate for sampling noise of 0.36.

2.2.4 Using resampling methods
The main intuition behind resampling methods is to use the sample as a pop-
ulation, to draw samples from it and compute our estimator on each of these
samples in order to gauge its variability over sampling repetitions. There are
three main methods of resampling that work that way: bootstrapping, radomiza-
tion inference and subsampling. Bootstrapping draws samples with replacement,
so that each sample has the same size as the original sample. Subsampling draws
samples without replacement, thereby the samples are of a smaller size than the
original one. Randomization inference keeps the same sample in all repetitions,
but changes the allocation of the treatment.

Why would we use resampling methods instead of CLT-based standard errors?
There are several possible reasons:
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1. Asymptotic refinements: sometimes, resampling methods are more precise
in small samples than the CLT-based asymptotic approaches. In that case,
we say that resampling methods offer asymptotic refinements.

2. Ease of computation: for some estimators, the CLT-based estimates of
sampling noise are complex or cumbersome to compute, whereas resampling
methods are only computationally intensive.

3. Inexistence of CLT-based estimates of sampling noise: some estimators
do not have any CLT-based estimates of sampling noise yet. That was
the case for the Nearest-Neighbour Matching estimator (NNM) for a long
time for example. It still is the case for the Synthetic Control Method
estimator. Beware though that the bootstrap is not valid for all estimators.
For example, it is possible to show that the bootstrap is invalid for NNM.
Subsampling is valid for NNM though (see Abadie and Imbens, 2006).

2.2.4.1 Bootstrap

The basic idea of the bootstrap is to use Monte Carlo replications to draw
samples from the original sample with replacement. Then, at each replication,
we compute the value of our estimator Ê on the new sample. Let’s call this new
value Ê∗k for bootstrap replication k. Under certain conditions, the distribution
of Ê∗k approximates the distribution of Ê over sample repetitions very well, and
all the more so as the sample size gets large.

What are the conditions under which the bootstrap is going to provide an
accurate estimation of the distribution of Ê? Horowitz (2001) reports on a very
nice result by Mammen that makes these conditions clear:

Theorem 2.6 (Mammen (1992)). Let {Xi : i = 1, . . . , N} be a random sample
from a population. For a sequence of functions gN and sequences of numbers
tN and σN , define ḡN = 1

N

∑N
i=1 gN (Xi) and TN = (ḡN − tN )/σN . For the

bootstrap sample {X∗i : i = 1, . . . , N}, define ḡ∗N = 1
N

∑N
i=1 gN (X∗i ) and T ∗N =

(ḡ∗N − ḡN )/σN . Let GN (τ) = Pr(TN ≤ τ) and G∗N (τ) = Pr(T ∗N ≤ τ), where this
last probability distribution is taken over bootstrap sampling replications. Then
G∗N consistently estimates GN if and only if TN

d→ N (0, 1).

Theorem 2.6 states that the bootstrap will offer a consistent estimation of the
distribution of a given estimator if and only if this estimator is asymptotically
normally distributed. It means that we could theoretically use the CLT-based
asymptotic distribution to compute sampling noise. So, and it demands to be
stronlgy emphasized, the bootstrap is not valid when the CLT fails.

How do we estimate sampling noise with the bootstrap? There are several ways
to do so, but I am going to emphasize the most widespread here, that is known as
the percentile method. Let’s define E∗1−δ

2
and E∗1+δ

2
as the corresponding quantiles

of the bootstrap distribution of Ê∗k over a large number K of replications. The
bootstrapped sampling noise using the percentile method is simply the distance
between these two quantities.
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Theorem 2.7 (Bootstrapped Estimate of Sampling Noise of WW). Under
Assumptions 1.7, 2.1, 2.2 and 2.3, for a given confidence level δ and sample size
N , the sampling noise of ˆWW can be approximated as follows:

2ε ≈ E∗1+δ
2
− E∗1−δ

2
≡ 2ε̃b.

Proof. The WW estimator can be written as a sum:

ˆ∆Y
WW = 1

N

N∑
i=1

(
Yi − 1

N

∑N
i=1 Yi

)(
Di − 1

N

∑N
i=1Di

)
1
N

∑N
i=1

(
Di − 1

N

∑N
i=1Di

)2 .

Using Lemma A.5, we know that the WW estimator is asymptotically normal
under Assumptions 1.7, ??, 2.2 and ??. Using Theorem 2.6 proves the result.

Remark. With the bootstrap, we are not going to define the confidence interval
using Theorem 2.1 but directly using

{
E∗1−δ

2
;E∗1+δ

2

}
. Indeed, we have defined

the bootstrapped estimator of sampling noise by using the asymetric confidence
interval. We could have used the equivalent of Definition 2.1 on the bootstrapped
samples to compute sampling noise using the symmetric confidence interval.
Both are feasible and similar in large samples, since the asymptotic distribution
is symmetric. One advantage of asymetric confidence intervals is that they
might capture deviations from the normal distribution in small samples. These
advantages are part of what we call asymptotic refinements. Rigorously, though,
asymptotic refinements have not been proved to exist for the percentile method
but only for the method bootstrapping asymptotically pivotal quantities.

Remark. We say that a method brings asymptotic refinements if it increases the
precision when estimating sampling noise and confidence intervals relative to the
asymptotic CLT-based approximation. The bootstrap has been shown rigorously
to bring asymptotic refinements when used to estimate the distribution of
asymptotically pivotal statistic. An asymptotically pivotal statistic is a statistic
that can be computed from the sample but that, asymptotically, converges to
a quantity that does not depend on the sample, like for example a standard
normal. Using Lemma A.5, we know for example that the following statistic is
asymptotically normal:

TWW
N =

ˆ∆Y
WW −∆Y

TT√
V[Y 1

i
|Di=1]

Pr(Di=1) +
V[Y 0

i
|Di=0]

1−Pr(Di=1)
N

d→ N (0, 1) .
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To build a confidence interval bootstrapping TWW
N , compute an estimator of

TWW
N for each bootstrapped sample, say T̂WW∗

N,k . You can for example use the
OLS estimator in the bootstrapped sample, with a heteroskedasticity-robust
standard error estimator. Or you can compute theWW estimator by hand in the
sample along with an estimator of its variance using the variance of the outcomes
in the treated and control groups. You can then estimate the confidence interval
as follows:

{
ˆ∆Y
WW − ˆσWW T̂

WW∗
N, 1−δ2

; ˆ∆Y
WW + ˆσWW T̂

WW∗
N, 1+δ

2

}
, where T̂WW∗

N,q iq the

qth quantile of the distribution of T̂WW∗
N,k over sampling replications and ˆσWW is

an estimate of the variance of ˆ∆Y
WW (either the CLT-based approximation of

the bootstrapped one, see below).

Remark. One last possibility to develop an estimator for sampling noise and
confidence interval is to use the bootstrap in order to estimate the variance
of the estimator Ê, σ̂2

E , and then use it to compute sampling noise. If Ê is
asymptotically normally distributed, we have that sampling noise is equal to
2Φ−1 ( δ+1

2
)
σ̂E . You can use the usual formula from Theore 2.1 to compute the

confidence interval. The bootstrapped variance of Ê, σ̂2
E , is simply the variance

of Ê∗k over bootstrap replications.

Example 2.9. In the numerical example, I am going to derive the bootstrapped
confidence intervals and sampling noise for the percentile method. Let’s first put
the dataset from our example in a nice data frame format so that resampling
is made easier. We then define a function taking a number of bootstrapped
replications and spitting out sampling noise and confidence intervals.
data <- as.data.frame(cbind(y,Ds,yB))
boot.fun.ww.1 <- function(seed,data){
set.seed(seed,kind="Wichmann-Hill")
data <- data[sample(nrow(data),replace = TRUE),]
ols.ww <- lm(y~Ds,data=data)
ww <- ols.ww$coef[[2]]
return(ww)

}

boot.fun.ww <- function(Nboot,data){
#sfInit(parallel=TRUE,cpus=8)
boot <- lapply(1:Nboot,boot.fun.ww.1,data=data)
#sfStop()
return(unlist(boot))

}

boot.CI.ww <- function(boot,delta){
return(c(quantile(boot,prob=(1-delta)/2),quantile(boot,prob=(1+delta)/2)))

}
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boot.samp.noise.ww <- function(boot,delta){
return(quantile(boot,prob=(1+delta)/2)-quantile(boot,prob=(1-delta)/2))

}

Nboot <- 500
ww.boot <- boot.fun.ww(Nboot,data)
ww.CI.boot <- boot.CI.ww(ww.boot,delta)
ww.samp.noise.boot <- boot.samp.noise.ww(ww.boot,delta)

Over 500 replications, the 99% bootstrapped confidence interval using the
percentile method is {−0.027; 0.295}. As a consequence, the bootstrapped
estimate of 99% sampling noise is of 0.321. Remember that, with N = 1000,
sampling noise is actually equal to 0.39.

In order to assess the global precision of bootstrapping, we are going to resort
to Monte Carlo simulations. For each Monte Carlo sample, we are going to
estimate sampling noise and confidence intervals using the bootstrap. As you
can imagine, this is going to prove rather computationally intensive. I cannot
use parallelization twice: I have to choose whether to parallelize the Monte Carlo
simulations or the bootstrap simulations. I have choosen to parallelize the outer
loop, so that a given job takes longer on each cluster.
monte.carlo.ww.boot <- function(s,N,param,Nboot,delta){
set.seed(s)
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
V <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]+param["sigma2U"]))
Ds[V<=log(param["barY"])] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)
data <- as.data.frame(cbind(y,Ds,yB))
ww.boot <- boot.fun.ww(Nboot,data)
ww.CI.boot <- boot.CI.ww(ww.boot,delta)
ww.samp.noise.boot <- boot.samp.noise.ww(ww.boot,delta)
return(c((1/sum(Ds))*sum(y*Ds)-(1/sum(1-Ds))*sum(y*(1-Ds)),var(y[Ds==1]),var(y[Ds==0]),mean(Ds),ww.CI.boot[[1]],ww.CI.boot[[2]],ww.samp.noise.boot))
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}

sf.simuls.ww.N.boot <- function(N,Nsim,Nboot,delta,param){
sfInit(parallel=TRUE,cpus=2*ncpus)
sfExport("boot.fun.ww","boot.CI.ww","boot.samp.noise.ww","boot.fun.ww.1")
sim <- as.data.frame(matrix(unlist(sfLapply(1:Nsim,monte.carlo.ww.boot,N=N,Nboot=Nboot,delta=delta,param=param)),nrow=Nsim,ncol=7,byrow=TRUE))
sfStop()
colnames(sim) <- c('WW','V1','V0','p','boot.lCI','boot.uCI','boot.samp.noise')
return(sim)

}

simuls.ww.boot <- lapply(N.sample,sf.simuls.ww.N.boot,Nsim=Nsim,param=param,Nboot=Nboot,delta=delta)

We can now graph our bootstrapped estimate of sampling noise in all of our
samples, the average bootstrapped estimates of sampling noise and of confidence
intervals, in Figures 2.13, 2.14 and 2.15 show.
par(mfrow=c(2,2))
for (i in 1:4){
hist(simuls.ww.boot[[i]][,'boot.samp.noise'],main=paste('N=',as.character(N.sample[i])),xlab=expression(hat(2*bar(epsilon))),xlim=c(min(simuls.ww.boot[[i]][,'boot.samp.noise']),max(simuls.ww.boot[[i]][,'boot.samp.noise'])))
abline(v=table.noise[i,colnames(table.noise)=='sampling.noise'],col="red")

}
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Figure 2.13: Distribution of the bootstrapped approximation of sampling noise
over replications of samples of different sizes (true sampling noise in red)

for (k in (1:length(N.sample))){
table.noise$boot.noise[k] <- mean(simuls.ww.boot[[k]]$boot.samp.noise)

}
ggplot(table.noise, aes(x=as.factor(N), y=TT)) +
geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=TT-sampling.noise/2, ymax=TT+sampling.noise/2), width=.2,position=position_dodge(.9),color='red') +
geom_errorbar(aes(ymin=TT-boot.noise/2, ymax=TT+boot.noise/2), width=.2,position=position_dodge(.9),color='blue') +
xlab("Sample Size")+



2.2. ESTIMATING SAMPLING NOISE 83

theme_bw()
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Figure 2.14: Average bootstrapped approximations of sampling noise over repli-
cations of samples of different sizes (true sampling noise in red)

N.plot <- 40
plot.list <- list()

for (k in 1:length(N.sample)){
set.seed(1234)
test.boot <- simuls.ww.boot[[k]][sample(N.plot),c('WW','boot.lCI','boot.uCI')]
test.boot <- as.data.frame(cbind(test.boot,rep(samp.noise(simuls.ww.boot[[k]][,'WW'],delta=delta),N.plot)))
colnames(test.boot) <- c('WW','boot.lCI','boot.uCI','sampling.noise')
test.boot$id <- 1:N.plot
plot.test.boot <- ggplot(test.boot, aes(x=as.factor(id), y=WW)) +

geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=WW-sampling.noise/2, ymax=WW+sampling.noise/2), width=.2,position=position_dodge(.9),color='red') +
geom_errorbar(aes(ymin=boot.lCI, ymax=boot.uCI), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=delta.y.ate(param)), colour="#990000", linetype="dashed")+
xlab("Sample id")+
theme_bw()+
ggtitle(paste("N=",N.sample[k]))

plot.list[[k]] <- plot.test.boot
}
plot.CI <- plot_grid(plot.list[[1]],plot.list[[2]],plot.list[[3]],plot.list[[4]],ncol=1,nrow=length(N.sample))
print(plot.CI)

TO DO: COMMENT AND USE PIVOTAL TEST STATISTIC

2.2.4.2 Randomization inference

Randomization inference (a.k.a. Fisher’s permutation approach) tries to mimick
the sampling noise due to the random allocation of the treatment vector, as we
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Figure 2.15: Bootstrapped confidence intervals of ˆWW for δ = 0.99 over sample
replications for various sample sizes (true confidence intervals in red)
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have seen in Section 2.1.3. In practice, the idea is simply to look at how the
treatment effect that we estimate varies when we visit all the possible allocations
of the treament dummy in the sample. For each new allocation, we are going to
compute the with/without estimator using the observed outcomes and the newly
allocated treatment dummy. It means that some actually treated observations
are going to enter into the computation of the control group mean, while some
actually untreated observations are going to enter into the computation of the
treatment group mean. As a consequence, the resulting distribution will be
centered at zero. Under the assumption of a constant treatment effect, the
distribution of the parameter obtained using randomization inference will be an
exact estimation of sampling noise for the sample treatment effect.

Notice how beautilful the result is: randomization inference yields an exact
measure of sampling noise. The resulting estimate of sampling noise is not an
approximation that is going to become better as sample size increases. No, it is
the actual value of sampling noise in the sample.

There are two ways to compute a confidence interval using Fisher’s permutation
approach. One is to form symmetric intervals using our estimate of sampling
noise as presented in Section 2.1.4. Another approach is to directly use the
quantiles of the distribution of the parameter centered around the estimated
treatment effect, in the same spirit as bootstrapped confidence intervals using
the percentile approach. This last approach accomodates possible asymetries in
the finite sample distribution of the treatment effect.

Computing the value of the treatment effect for all possible treatment allocations
can take a lot of time with large samples. That’s why we in general compute
the test statistic for a reasonably large number of random allocations.

Remark. Fisher’s original approach is slightly different from the one I delineate
here. Fisher wanted to derive a test statistic for whether the treatment effect
was zero, not to estimate sampling noise. Under the null that the treatment
has absolutely no effect whatsoever on any unit, any test statistic whose value
should be zero if the two distributions where identical can be computed on the
actual sample and its distribution can be derived using Fisher’s permutation
approach. The test statistic can be the difference in means, standard deviations,
medians, ranks, the T-stat, the Kolmogorov-Smirnov test statistic or any other
test statistic that you might want to compute. Comparing the actual value of
the test statistic to its distribution under the null gives a p-value for the validity
of the null.

Remark. Imbens and Rubin propose a more complex procedure to derive the
confidence interval for the treatment effect using randomization inference. They
propose to compute Fisher’s p-value for different values of the treatment effect,
and to set the confidence interval as the values of the treatment effect under
and above which the p-value is smaller than δ. When using the with/without
estimator as the test statistic, the two approches should be equivalent. Is is
possible that the estimates using statistics less influenced by outliers are more
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precise though.

Remark. Note that we pay two prices for having an exact estimation of sampling
noise:

1. We have to assume that the treatment effect is constant, e.g. we have to
assume homoskedasticity. This is in general not the case. Whether this
is in general a big issue depends on how large the difference is between
homoskedastic and heteroskedastic standard errors. One way around this
issue would be to add a small amount of noise to the observations that
are in the group with the lowest variance. Whether this would work in
practice is still to be demonstrated.

2. We have to be interested only in the sampling noise of the sample treat-
ment effect. The sampling noise of the population treatment effect is
not estimated using Fisher’s permutation approach. As we have seen in
Section 2.1.3, there is no practical difference between these two sampling
noises in our example. Whether this is the case in general deserves further
investigation.

Example 2.10. In practice, randomization inference is very close to a bootstrap
procedure, except that instead of resampling with replacement from the original
sample, we only change the vector of treatment allocation at each replication.
fisher.fun.ww.1 <- function(seed,data){

set.seed(seed,kind="Wichmann-Hill")
data$D <- rbinom(nrow(data),1,mean(data$Ds))
ols.ww <- lm(y~D,data=data)
ww <- ols.ww$coef[[2]]
return(ww)

}

fisher.fun.ww <- function(Nfisher,data,delta){
fisher <- unlist(lapply(1:Nfisher,fisher.fun.ww.1,data=data))
ols.ww <- lm(y~Ds,data=data)
ww <- ols.ww$coef[[2]]
fisher <- fisher+ ww
fisher.CI.ww <- c(quantile(fisher,prob=(1-delta)/2),quantile(fisher,prob=(1+delta)/2))
fisher.samp.noise.ww <- quantile(fisher,prob=(1+delta)/2)-quantile(fisher,prob=(1-delta)/2)
return(list(fisher,fisher.CI.ww,fisher.samp.noise.ww))

}

Nfisher <- 500
ww.fisher <- fisher.fun.ww(Nfisher,data,delta)

Over 500 replications, the 99% confidence interval based on Fisher’s permutation
approach is {−0.052; 0.3}. As a consequence, the bootstrapped estimate of 99%
sampling noise is of 0.352. Remember that, with N = 1000, sampling noise is
actually equal to 0.39.
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In order to assess the global precision of Fisher’s permutation method, we are
going to resort to Monte Carlo simulations.
monte.carlo.ww.fisher <- function(s,N,param,Nfisher,delta){
set.seed(s)
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
V <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]+param["sigma2U"]))
Ds[V<=log(param["barY"])] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)
data <- as.data.frame(cbind(y,Ds,yB))
ww.fisher <- fisher.fun.ww(Nfisher,data,delta)
return(c((1/sum(Ds))*sum(y*Ds)-(1/sum(1-Ds))*sum(y*(1-Ds)),var(y[Ds==1]),var(y[Ds==0]),mean(Ds),ww.fisher[[2]][1],ww.fisher[[2]][2],ww.fisher[[3]]))

}

sf.simuls.ww.N.fisher <- function(N,Nsim,Nfisher,delta,param){
sfInit(parallel=TRUE,cpus=2*ncpus)
sfExport("fisher.fun.ww","fisher.fun.ww.1")
sim <- as.data.frame(matrix(unlist(sfLapply(1:Nsim,monte.carlo.ww.fisher,N=N,Nfisher=Nfisher,delta=delta,param=param)),nrow=Nsim,ncol=7,byrow=TRUE))
sfStop()
colnames(sim) <- c('WW','V1','V0','p','fisher.lCI','fisher.uCI','fisher.samp.noise')
return(sim)

}

simuls.ww.fisher <- lapply(N.sample,sf.simuls.ww.N.fisher,Nsim=Nsim,param=param,Nfisher=Nfisher,delta=delta)

We can now graph our bootstrapped estimate of sampling noise in all of our
samples, the average bootstrapped estimates of sampling noise and of confidence
intervals, as Figures 2.16, 2.17 and 2.18 show. The results are pretty good. On
average, estimates of sampling noise using Randomization Inference are pretty
accurate, as Figure 2.17 shows. It seems that sampling noise is underestimated
by Randomization Inference when N = 1000, without any clear reason why.
par(mfrow=c(2,2))
for (i in 1:4){
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hist(simuls.ww.fisher[[i]][,'fisher.samp.noise'],main=paste('N=',as.character(N.sample[i])),xlab=expression(hat(2*bar(epsilon))),xlim=c(min(simuls.ww.fisher[[i]][,'fisher.samp.noise']),max(simuls.ww.fisher[[i]][,'fisher.samp.noise'])))
abline(v=table.noise[i,colnames(table.noise)=='sampling.noise'],col="red")

}
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Figure 2.16: Distribution of the estimates of sampling noise using Randomization
Inference over replications of samples of different sizes (true sampling noise in
red)

for (k in (1:length(N.sample))){
table.noise$fisher.noise[k] <- mean(simuls.ww.fisher[[k]]$fisher.samp.noise)

}
ggplot(table.noise, aes(x=as.factor(N), y=TT)) +
geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=TT-sampling.noise/2, ymax=TT+sampling.noise/2), width=.2,position=position_dodge(.9),color='red') +
geom_errorbar(aes(ymin=TT-fisher.noise/2, ymax=TT+fisher.noise/2), width=.2,position=position_dodge(.9),color='blue') +
xlab("Sample Size")+
theme_bw()
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Figure 2.17: Average estimates of sampling noise using Randomization Inference
over replications of samples of different sizes (true sampling noise in red)
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N.plot <- 40
plot.list <- list()

for (k in 1:length(N.sample)){
set.seed(1234)
test.fisher <- simuls.ww.fisher[[k]][sample(N.plot),c('WW','fisher.lCI','fisher.uCI')]
test.fisher <- as.data.frame(cbind(test.fisher,rep(samp.noise(simuls.ww.fisher[[k]][,'WW'],delta=delta),N.plot)))
colnames(test.fisher) <- c('WW','fisher.lCI','fisher.uCI','sampling.noise')
test.fisher$id <- 1:N.plot
plot.test.fisher <- ggplot(test.fisher, aes(x=as.factor(id), y=WW)) +

geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=WW-sampling.noise/2, ymax=WW+sampling.noise/2), width=.2,position=position_dodge(.9),color='red') +
geom_errorbar(aes(ymin=fisher.lCI, ymax=fisher.uCI), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=delta.y.ate(param)), colour="#990000", linetype="dashed")+
xlab("Sample id")+
theme_bw()+
ggtitle(paste("N=",N.sample[k]))

plot.list[[k]] <- plot.test.fisher
}
plot.CI <- plot_grid(plot.list[[1]],plot.list[[2]],plot.list[[3]],plot.list[[4]],ncol=1,nrow=length(N.sample))
print(plot.CI)

TO DO: ALTERNATIVE APPROACH USING p-VALUES

2.2.4.3 Subsampling

TO DO: ALL
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Figure 2.18: Confidence intervals of ˆWW for δ = 0.99 estimated using Ran-
domization Inference over sample replications for various sample sizes (true
confidence intervals in red)
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Chapter 3

Randomized Controlled
Trials

The most robust and rigorous method that has been devised by social scientists
to estimate the effect of an intervention on an outcome is the Randomized
Controlled Trial (RCT). RCTs are used extensively in the field to evaluate a
wide array of programs, from development, labor and education interventions to
environmental nudges to website and search engine features.

The key feature of an RCT is the introduction by the researcher of randomness
in the allocation of the treatment. Individuals with Ri = 1, where Ri denotes
the outcome of a random event, such as a coin toss, have a higher probability
of receiving the treatment. Potential outcomes have the same distribution in
both Ri = 1 and Ri = 0 groups. If we observe different outcomes between
the treatment and control group, it has to be because of the causal effect of
the treatment, since both groups only differ by the proportion of treated and
controls.

The most attractive feature of RCTs is that researchers enforce the main iden-
tification assumption (we do not have to assume that it holds, we can make
sure that it does). This property of RCTs distinguishes them from all the other
methods that we are going to learn in this class.

In this lecture, we are going to study how to estimate the effect of an intervention
on an outcome using RCTs. We are especially going to study the various types
of designs and what can be recovered from them using which technique. For each
design, we are going to detail which treatment effect it enables us to identify,
how to obtain a sample estimate of this treatment effect and how to estimate
the associated sampling noise. The main substantial difference between these
four designs are the types of treatment effect parameters that they enable us to
recover. Sections 3.1 to 3.4 of this lecture introduces the four designs and how

93
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to analyze them.

Unfortunately, RCTs are not bullet proof. They suffer from problems that might
make their estimates of causal effects badly biased. Section ?? surveys the
various threats and what we can do to try to minimize them.

3.1 Brute Force Design
In the Brute Force Design, eligible individuals are randomly assigned to the
treatment irrespective of their willingness to accept it and have to comply with
the assignment. This is a rather dumb procedure but it is very easy to analyze
and that is why I start with it. With the Brute Force Design, you can recover
the average effect of the treatment on the whole population. This parameter is
generally called the Average Treatment Effect (ATE).

In this section, I am going to detail the assumptions required for the Brute Force
Design to identify the ATE, how to form an estimator of the ATE and how to
estimate its sampling noise.

3.1.1 Identification
In the Brute Force Design, we need two assumptions for the ATE to be identified
in the population: Independence and Brute Force Validity.

Definition 3.1 (Independence). We assume that the allocation of the program
is independent of potential outcomes:

Ri ⊥⊥ (Y 0
i , Y

1
i ).

Here, ⊥⊥ codes for independence or random variables. Independence can be
enforced by the randomized allocation.

We need a second assumption for the Brute Force Design to work:

Definition 3.2 (Brute Force Validity). We assume that the randomized allo-
cation of the program is mandatory and does not interfere with how potential
outcomes are generated:

Yi =
{
Y 1
i if Ri = 1
Y 0
i if Ri = 0

with Y 1
i and Y 0

i the same potential outcomes as defined in Lecture~0 with a
routine allocation of the treatment.

Under both Idependence and Brute Force Validity, we have the follwing result:

Theorem 3.1 (Identification in the Brute Force Design). Under Assumptions
3.1 and 3.2, the WW estimator identifies the Average Effect of the Treatment
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(ATE):

∆Y
WW = ∆Y

ATE ,

with:

∆Y
WW = E[Yi|Ri = 1]− E[Yi|Ri = 0]

∆Y
ATE = E[Y 1

i − Y 0
i ].

Proof.

∆Y
WW = E[Yi|Ri = 1]− E[Yi|Ri = 0]

= E[Y 1
i |Ri = 1]− E[Y 0

i |Ri = 0]
= E[Y 1

i ]− E[Y 0
i ]

= E[Y 1
i − Y 0

i ],

where the first equality uses Assumption 3.2, the second equality Assumption
3.1 and the last equality the linearity of the expectation operator.

Remark. As you can see from Theorem 3.1, ATE is the average effect of the
treatment on the whole population, those who would be eligible for it and those
who would not. ATE differs from TT because the effect of the treatment might
be correlated with treatment intake. It is possible that the treatment has a
bigger (resp. smaller) effect on treated individuals. In that case, ATE is higher
(resp. smaller) than TT.

Remark. Another related design is the Brute Force Design among Eligibles. In
this design, you impose the treatment status only among eligibles, irrespective
of whether they want the treatment or not. It can be operationalized using the
selection rule used in Section 3.2.

Example 3.1. Let’s use the example to illustrate the concept of ATE. Let’s
generate data with our usual parameter values without allocating the treatment
yet:
param <- c(8,.5,.28,1500,0.9,0.01,0.05,0.05,0.05,0.1)
names(param) <- c("barmu","sigma2mu","sigma2U","barY","rho","theta","sigma2epsilon","sigma2eta","delta","baralpha")

set.seed(1234)
N <-1000
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
Ds[YB<=param["barY"]] <- 1
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epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)

In the sample, the ATE is the average difference between y1
i and y0

i , or – the
expectation operator being linear – the difference between average y1

i and average
y0
i . In our sample, the former is equal to 0.179 and the latter to 0.179.

In the population, the ATE is equal to:

∆y
ATE = E[Y 1

i − Y 0
i ]

= E[αi]
= ᾱ+ θµ̄.

Let’s write a function to compute the value of the ATE and of TT (we derived
the formula for TT in the previous lecture):
delta.y.ate <- function(param){
return(param["baralpha"]+param["theta"]*param["barmu"])

}
delta.y.tt <- function(param){
return(param["baralpha"]+param["theta"]*param["barmu"]-param["theta"]*((param["sigma2mu"]*dnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"]))))/(sqrt(param["sigma2mu"]+param["sigma2U"])*pnorm((log(param["barY"])-param["barmu"])/(sqrt(param["sigma2mu"]+param["sigma2U"]))))))

}

In the population, with our parameter values, ∆y
ATE = 0.18 and ∆y

TT = 0.172.
In our case, selection into the treatment is correlated with lower outcomes, so
that TT ≤ ATE.

In order to implement the Brute Force Design in practice in a sample, we simply
either draw a coin repeatedly for each member of the sample, assigning for
example, all “heads” to the treatment and all “tails” to the control. Because it
can be a little cumbersome, it is possible to replace the coin toss by a pseudo-
Random Number Generator (RNG), which is is an algorithm that tries to mimic
the properties of random draws. When generating the samples in the numerical
exmples, I actually use a pseudo-RNG. For example, we can draw from a uniform
distribution on [0, 1] and allocate to the treatment all the individuals whose draw
is smaller than 0.5:
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R∗i ∼ U [0, 1]

Ri =
{

1 if R∗i ≤ .5
0 if R∗i > .5

The advantage of using a uniform law is that you can set up proportions of
treated and controls easily.

Example 3.2. In our numerical example, the following R code generates two
random groups, one treated and one control, and imposes the Assumption of
Brute Force Validity:
# randomized allocation of 50% of individuals
Rs <- runif(N)
R <- ifelse(Rs<=.5,1,0)
y <- y1*R+y0*(1-R)
Y <- Y1*R+Y0*(1-R)

Remark. It is interesting to stop for one minute to think about how the Brute
Force Design solves the FPCI. First, with the ATE, the counterfactual problem
is more severe than in the case of the TT. In the routine mode of the program,
where only eligible individuals receive the treatment, both parts of the ATE are
unobserved:

• E[Y 1
i ] is unobserved since we only observe the expected value of outcomes

for the treated E[Y 1
i |Di = 1], and they do not have to be the same.

• E[Y 0
i ] is unobserved since we only observe the expected value of outcomes

for the untreated E[Y 0
i |Di = 0], and they do not have to be the same.

What the Brute Force Design does, is that it allocates randomly one part of the
sample to the treatment, so that we see E[Y 1

i |Ri = 1] = E[Y 1
i ] and one part to

the control so that we see E[Y 0
i |Ri = 0] = E[Y 0

i ].

3.1.2 Estimating ATE
3.1.2.1 Using the WW estimator

In order to estimate ATE in a sample where the treatment has been random-
ized using a Brute Force Design, we simply use the sample equivalent of the
With/Without estimator:

∆̂Y
WW = 1∑N

i=1Ri

N∑
i=1

YiRi −
1∑N

i=1(1−Ri)

N∑
i=1

Yi(1−Ri).

Example 3.3. In our numerical example, the WW estimator can be computed
as follows in the sample:
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delta.y.ww <- mean(y[R==1])-mean(y[R==0])

The WW estimator of the ATE in the sample is equal to 0.156. Let’s recall that
the true value of ATE is 0.18 in the population and 0.179 in the sample.

We can also see in our example how the Brute Force Design approximates the
counterfactual expectation E[y1

i ] and its sample equivalent mean 1∑N

i=1

∑N
i=1 y

1
i

by the observed mean in the treated sample 1∑N

i=1
Ri

∑N
i=1 yiRi. In our example,

the sample value of the counterfactual mean potential outcome 1∑N

i=1

∑N
i=1 y

1
i is

equal to 8.222 and the sample value of its observed counterpart is 8.209. Similarly,
the sample value of the counterfactual mean potential outcome 1∑N

i=1

∑N
i=1 y

0
i is

equal to 8.043 and the sample value of its observed counterpart is 8.054.

3.1.2.2 Using OLS

As we have seen in Lecture 0, the WW estimator is numerically identical to
the OLS estimator of a linear regression of outcomes on treatment: The OLS
coefficient β in the following regression:

Yi = α+ βRi + Ui

is the WW estimator.

Example 3.4. In our numerical example, we can run the OLS regression as
follows:
reg.y.R.ols <- lm(y~R)

∆̂y
OLS = 0.156 which is exactly equal, as expected, to the WW estimator: 0.156.

3.1.2.3 Using OLS conditioning on covariates

The advantage of using OLS other the direct WW comparison is that it gives
you a direct estimate of sampling noise (see next section) but also that it enables
you to condition on additional covariates in the regression: The OLS coefficient
β in the following regression:

Yi = α+ βRi + γ′Xi + Ui

is a consistent (and even unbiased) estimate of the ATE.

proof needed, especially assumption of linearity. Also, is interaction
between Xi and Ri needed?

Example 3.5. In our numerical example, we can run the OLS regression
conditioning on yBi as follows:
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reg.y.R.ols.yB <- lm(y~R + yB)

∆̂y
OLSX = 0.177. Note that ∆̂y

OLSX 6= ∆̂y
WW . There is no numerical equivalence

between the two estimators.

Remark. Why would you want to condition on covariates in an RCT? Indeed,
covariates should be balanced by randomization and thus there does not seem to
be a rationale for conditioning on potential confounders, since there should be
none. The main reason why we condition on covariates is to decrease sampling
noise. Remember that sampling noise is due to imbalances between confounders
in the treatment and control group. Since these imbalances are not systematic,
the WW estimator is unbiased. We can also make the bias due to these unbalances
as small as we want by choosing an adequate sample size (the WW estimator
is consistent). But for a given sample size, these imbalances generate sampling
noise around the true ATE. Conditioning on covariates helps decrease sampling
noise by accounting for imbalances due to observed covariates. If observed
covariates explain a large part of the variation in outcomes, conditioning on
them is going to prevent a lot of sampling noise from occuring.

Example 3.6. In order to make the gains in precision from conditioning on
covariates apparent, let’s use Monte Carlo simulations of our numerical example.
monte.carlo.brute.force.ww <- function(s,N,param){
set.seed(s)
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
Ds[YB<=param["barY"]] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
# randomized allocation of 50% of individuals
Rs <- runif(N)
R <- ifelse(Rs<=.5,1,0)
y <- y1*R+y0*(1-R)
Y <- Y1*R+Y0*(1-R)
reg.y.R.ols <- lm(y~R)
return(c(reg.y.R.ols$coef[2],sqrt(vcovHC(reg.y.R.ols,type='HC2')[2,2])))

}
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simuls.brute.force.ww.N <- function(N,Nsim,param){
simuls.brute.force.ww <- as.data.frame(matrix(unlist(lapply(1:Nsim,monte.carlo.brute.force.ww,N=N,param=param)),nrow=Nsim,ncol=2,byrow=TRUE))
colnames(simuls.brute.force.ww) <- c('WW','se')
return(simuls.brute.force.ww)

}

sf.simuls.brute.force.ww.N <- function(N,Nsim,param){
sfInit(parallel=TRUE,cpus=2*ncpus)
sfLibrary(sandwich)
sim <- as.data.frame(matrix(unlist(sfLapply(1:Nsim,monte.carlo.brute.force.ww,N=N,param=param)),nrow=Nsim,ncol=2,byrow=TRUE))
sfStop()
colnames(sim) <- c('WW','se')
return(sim)

}

Nsim <- 1000
#Nsim <- 10
N.sample <- c(100,1000,10000,100000)
#N.sample <- c(100,1000,10000)
#N.sample <- c(100,1000)
#N.sample <- c(100)

simuls.brute.force.ww <- lapply(N.sample,sf.simuls.brute.force.ww.N,Nsim=Nsim,param=param)
names(simuls.brute.force.ww) <- N.sample

monte.carlo.brute.force.ww.yB <- function(s,N,param){
set.seed(s)
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
Ds[YB<=param["barY"]] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
# randomized allocation of 50% of individuals
Rs <- runif(N)
R <- ifelse(Rs<=.5,1,0)
y <- y1*R+y0*(1-R)
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Y <- Y1*R+Y0*(1-R)
reg.y.R.yB.ols <- lm(y~R + yB)
return(c(reg.y.R.yB.ols$coef[2],sqrt(vcovHC(reg.y.R.yB.ols,type='HC2')[2,2])))

}

simuls.brute.force.ww.yB.N <- function(N,Nsim,param){
simuls.brute.force.ww.yB <- as.data.frame(matrix(unlist(lapply(1:Nsim,monte.carlo.brute.force.ww.yB,N=N,param=param)),nrow=Nsim,ncol=2,byrow=TRUE))
colnames(simuls.brute.force.ww.yB) <- c('WW','se')
return(simuls.brute.force.ww.yB)

}

sf.simuls.brute.force.ww.yB.N <- function(N,Nsim,param){
sfInit(parallel=TRUE,cpus=2*ncpus)
sfLibrary(sandwich)
sim <- as.data.frame(matrix(unlist(sfLapply(1:Nsim,monte.carlo.brute.force.ww.yB,N=N,param=param)),nrow=Nsim,ncol=2,byrow=TRUE))
sfStop()
colnames(sim) <- c('WW','se')
return(sim)

}

Nsim <- 1000
#Nsim <- 10
N.sample <- c(100,1000,10000,100000)
#N.sample <- c(100,1000,10000)
#N.sample <- c(100,1000)
#N.sample <- c(100)

simuls.brute.force.ww.yB <- lapply(N.sample,sf.simuls.brute.force.ww.yB.N,Nsim=Nsim,param=param)
names(simuls.brute.force.ww.yB) <- N.sample
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Figure 3.1: Distribution of the WW and OLSX estimators in a Brute Force
design over replications of samples of different sizes
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Figure 3.1 shows that the gains in precision from conditioning on yBi are spectac-
ular in our numerical example. They basically correspond to a gain in one order
of magnitude of sample size: the precision of the OLSX estimator conditioning
on yBi with a sample size of 100 is similar to the precision of the OLS estimator
not conditioning on yBi with a sample size of 1000. This large gain in precision
is largely due to the fact that yi and yBi are highly correlated. Not all covariates
perform so well in actual samples in the social sciences.

Remark. The ability to condition on covariates in order to decrease sampling
noise is a blessing but can also be a curse when combined with significance
testing. Indeed, you can now see that you can run a lot of regressions (with and
without some covariates, interactions, etc) and maybe report only the statistically
significant ones. This is a bad practice that will lead to publication bias and
inflated treatment effects. Several possibilities in order to avoid that:

1. Pre-register your analysis and explain which covariates you are going to
use (with which interactions, etc) so that you cannot cherry pick your
favorite results ex-post.

2. Use a stratified design for your RCT (more on this in Lecture 6) so that the
important covariates are already balanced between treated and controls.

3. If unable to do all of the above, report results from regressions without
controls and with various sets of controls. We do not expect the various
treatment effect estimates to be the same (they cannot be, otherwise,
they would have similar sampling noise), but we expect the following
pattern: conditioning should systematically decrease sampling noise, not
increase the treatment effect estimate. If conditioning on covariates makes
a treatment effect significant, pay attention to why: is it because of a
decrease in sampling noise (expected and OK) or because of an increase in
treatment effect (beware specification search).

Revise that especially in light of Chapter ??

Remark. You might not be happy with the assumption of linearity needed to
use OLS to control for covariates. I have read somewhere (forgot where) that
this should not be much of a problem since covariates are well balanced between
groups by randomization, and thus a linear first approximation to the function
relating Xi to Yi should be fine. I tend not to buy that argument much. I have
to run simulations with a non linear relation between outcomes and controls and
see how linear OLS performs. If you do not like the linearity assumption, you
can always use any of the nonparametric observational methods presented in
Chapter 5.

3.1.2.4 Estimating Sampling Noise

In order to estimate sampling noise, you can either use the CLT-based approach
or resampling, either using the bootstrap or randomization inference. In Section
2.2, we have already discussed how to estimate sampling noise when using
the WW estimator that we are using here. We are going to use the default
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and heteroskedasticity-robust standard errors from OLS, which are both CLT-
based. Only the heteroskedasticity-robust standard errors are valid under the
assumptions that we have made so far. Homoskedasticity would require constant
treatment effects. Heteroskedasticity being small in our numerical example, that
should not matter much, but it could in other applications.

Example 3.7. Let us first estimate sampling noise for the simple WW estimator
without control variables, using the OLS estimator.
sn.BF.simuls <- 2*quantile(abs(simuls.brute.force.ww[['1000']][,'WW']-delta.y.ate(param)),probs=c(0.99))
sn.BF.OLS.hetero <- 2*qnorm((delta+1)/2)*sqrt(vcovHC(reg.y.R.ols,type='HC2')[2,2])
sn.BF.OLS.homo <- 2*qnorm((delta+1)/2)*sqrt(vcov(reg.y.R.ols)[2,2])

The true value of the 99% sampling noise with a sample size of 1000 and no
control variables is stemming from the simulations is 0.274. The 99% sampling
noise estimated using heteroskedasticity robust OLS standard errors is 0.295.
The 99% sampling noise estimated using default OLS standard errors is 0.294.

Let us now estimate sampling noise for the simple WW estimator conditioning
on yBi , using the OLS estimator.
sn.BF.simuls.yB <- 2*quantile(abs(simuls.brute.force.ww.yB[['1000']][,'WW']-delta.y.ate(param)),probs=c(0.99))
sn.BF.OLS.hetero.yB <- 2*qnorm((delta+1)/2)*sqrt(vcovHC(reg.y.R.ols.yB,type='HC2')[2,2])
sn.BF.OLS.homo.yB <- 2*qnorm((delta+1)/2)*sqrt(vcov(reg.y.R.ols.yB)[2,2])

The true value of the 99% sampling noise with a sample size of 1000 and no
control variables is stemming from the simulations is 0.088. The 99% sampling
noise estimated using heteroskedasticity robust OLS standard errors is 0.092.
The 99% sampling noise estimated using default OLS standard errors is 0.091.

Let’s see how all of this works on average. Figure 3.2 shows that overall
the sampling nois eis much lower with OLSX than with WW , as expected
from Figure 3.1. The CLT-based estimator of sampling noise accounting for
heteroskedasticity (in blue) recovers true sampling noise (in red) pretty well.
Figure 3.3 shows that the CLT-based estimates of sampling noise are on point,
except for N = 10000, where the CLT slightly overestimates true sampling noise.
Figure 3.4 shows what happens when conditioning on Y B in a selection of 40
samples. The reduction in samplong noise is pretty drastic here.
for (k in (1:length(N.sample))){
simuls.brute.force.ww[[k]]$CLT.noise <- 2*qnorm((delta+1)/2)*simuls.brute.force.ww[[k]][,'se']
simuls.brute.force.ww.yB[[k]]$CLT.noise <- 2*qnorm((delta+1)/2)*simuls.brute.force.ww.yB[[k]][,'se']

}

samp.noise.ww.BF <- sapply(lapply(simuls.brute.force.ww,`[`,,1),samp.noise,delta=delta)
precision.ww.BF <- sapply(lapply(simuls.brute.force.ww,`[`,,1),precision,delta=delta)
names(precision.ww.BF) <- N.sample
signal.to.noise.ww.BF <- sapply(lapply(simuls.brute.force.ww,`[`,,1),signal.to.noise,delta=delta,param=param)
names(signal.to.noise.ww.BF) <- N.sample
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table.noise.BF <- cbind(samp.noise.ww.BF,precision.ww.BF,signal.to.noise.ww.BF)
colnames(table.noise.BF) <- c('sampling.noise', 'precision', 'signal.to.noise')
table.noise.BF <- as.data.frame(table.noise.BF)
table.noise.BF$N <- as.numeric(N.sample)
table.noise.BF$ATE <- rep(delta.y.ate(param),nrow(table.noise.BF))
for (k in (1:length(N.sample))){
table.noise.BF$CLT.noise[k] <- mean(simuls.brute.force.ww[[k]]$CLT.noise)

}
table.noise.BF$Method <- rep("WW",nrow(table.noise.BF))

samp.noise.ww.BF.yB <- sapply(lapply(simuls.brute.force.ww.yB,`[`,,1),samp.noise,delta=delta)
precision.ww.BF.yB <- sapply(lapply(simuls.brute.force.ww.yB,`[`,,1),precision,delta=delta)
names(precision.ww.BF.yB) <- N.sample
signal.to.noise.ww.BF.yB <- sapply(lapply(simuls.brute.force.ww.yB,`[`,,1),signal.to.noise,delta=delta,param=param)
names(signal.to.noise.ww.BF.yB) <- N.sample
table.noise.BF.yB <- cbind(samp.noise.ww.BF.yB,precision.ww.BF.yB,signal.to.noise.ww.BF.yB)
colnames(table.noise.BF.yB) <- c('sampling.noise', 'precision', 'signal.to.noise')
table.noise.BF.yB <- as.data.frame(table.noise.BF.yB)
table.noise.BF.yB$N <- as.numeric(N.sample)
table.noise.BF.yB$ATE <- rep(delta.y.ate(param),nrow(table.noise.BF.yB))
for (k in (1:length(N.sample))){
table.noise.BF.yB$CLT.noise[k] <- mean(simuls.brute.force.ww.yB[[k]]$CLT.noise)

}
table.noise.BF.yB$Method <- rep("OLSX",nrow(table.noise.BF))

table.noise.BF.tot <- rbind(table.noise.BF,table.noise.BF.yB)
table.noise.BF.tot$Method <- factor(table.noise.BF.tot$Method,levels=c("WW","OLSX"))

ggplot(table.noise.BF.tot, aes(x=as.factor(N), y=ATE,fill=Method)) +
geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=ATE-sampling.noise/2, ymax=ATE+sampling.noise/2), width=.2,position=position_dodge(.9),color='red') +
geom_errorbar(aes(ymin=ATE-CLT.noise/2, ymax=ATE+CLT.noise/2), width=.2,position=position_dodge(.9),color='blue') +
xlab("Sample Size")+
theme_bw()+
theme(legend.position=c(0.85,0.88))

par(mfrow=c(2,2))
for (i in 1:length(simuls.brute.force.ww)){
hist(simuls.brute.force.ww[[i]][,'CLT.noise'],main=paste('N=',as.character(N.sample[i])),xlab=expression(hat(2*bar(epsilon))[WW]),xlim=c(min(table.noise.BF[i,colnames(table.noise)=='sampling.noise'],min(simuls.brute.force.ww[[i]][,'CLT.noise'])),max(table.noise.BF[i,colnames(table.noise)=='sampling.noise'],max(simuls.brute.force.ww[[i]][,'CLT.noise']))))
abline(v=table.noise.BF[i,colnames(table.noise)=='sampling.noise'],col="red")

}
par(mfrow=c(2,2))
for (i in 1:length(simuls.brute.force.ww.yB)){
hist(simuls.brute.force.ww.yB[[i]][,'CLT.noise'],main=paste('N=',as.character(N.sample[i])),xlab=expression(hat(2*bar(epsilon))[OLSX]),xlim=c(min(table.noise.BF.yB[i,colnames(table.noise)=='sampling.noise'],min(simuls.brute.force.ww.yB[[i]][,'CLT.noise'])),max(table.noise.BF.yB[i,colnames(table.noise)=='sampling.noise'],max(simuls.brute.force.ww.yB[[i]][,'CLT.noise']))))
abline(v=table.noise.BF.yB[i,colnames(table.noise)=='sampling.noise'],col="red")
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Figure 3.2: Average CLT-based approximations of sampling noise in the Brute
Force design for WW and OLSX over replications of samples of different sizes
(true sampling noise in red)
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Figure 3.3: Distribution of the CLT approximation of sampling noise in the
Brute Force design for WW and OLSX over replications of samples of different
sizes (true sampling noise in red)

N.plot <- 40
plot.list <- list()
limx <- list(c(-0.65,1.25),c(-0.1,0.5),c(0,0.30),c(0,0.25))

for (k in 1:length(N.sample)){
set.seed(1234)
test.CLT.BF <- simuls.brute.force.ww[[k]][sample(N.plot),c('WW','CLT.noise')]
test.CLT.BF <- as.data.frame(cbind(test.CLT.BF,rep(samp.noise(simuls.brute.force.ww[[k]][,'WW'],delta=delta),N.plot)))
colnames(test.CLT.BF) <- c('WW','CLT.noise','sampling.noise')
test.CLT.BF$id <- 1:N.plot
plot.test.CLT.BF <- ggplot(test.CLT.BF, aes(x=as.factor(id), y=WW)) +
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geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=WW-sampling.noise/2, ymax=WW+sampling.noise/2), width=.2,position=position_dodge(.9),color='red') +
geom_errorbar(aes(ymin=WW-CLT.noise/2, ymax=WW+CLT.noise/2), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=delta.y.ate(param)), colour="#990000", linetype="dashed")+
ylim(limx[[k]][1],limx[[k]][2])+
xlab("Sample id")+
theme_bw()+
ggtitle(paste("N=",N.sample[k]))

plot.list[[k]] <- plot.test.CLT.BF
}
plot.CI.BF <- plot_grid(plot.list[[1]],plot.list[[2]],plot.list[[3]],plot.list[[4]],ncol=1,nrow=length(N.sample))
print(plot.CI.BF)

plot.list <- list()
for (k in 1:length(N.sample)){
set.seed(1234)
test.CLT.BF.yB <- simuls.brute.force.ww.yB[[k]][sample(N.plot),c('WW','CLT.noise')]
test.CLT.BF.yB <- as.data.frame(cbind(test.CLT.BF.yB,rep(samp.noise(simuls.brute.force.ww.yB[[k]][,'WW'],delta=delta),N.plot)))
colnames(test.CLT.BF.yB) <- c('WW','CLT.noise','sampling.noise')
test.CLT.BF.yB$id <- 1:N.plot
plot.test.CLT.BF.yB <- ggplot(test.CLT.BF.yB, aes(x=as.factor(id), y=WW)) +

geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=WW-sampling.noise/2, ymax=WW+sampling.noise/2), width=.2,position=position_dodge(.9),color='red') +
geom_errorbar(aes(ymin=WW-CLT.noise/2, ymax=WW+CLT.noise/2), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=delta.y.ate(param)), colour="#990000", linetype="dashed")+
ylim(limx[[k]][1],limx[[k]][2])+
xlab("Sample id")+
ylab("OLSX")+
theme_bw()+
ggtitle(paste("N=",N.sample[k]))

plot.list[[k]] <- plot.test.CLT.BF.yB
}
plot.CI.BF.yB <- plot_grid(plot.list[[1]],plot.list[[2]],plot.list[[3]],plot.list[[4]],ncol=1,nrow=length(N.sample))
print(plot.CI.BF.yB)

3.2 Self-Selection design
In a Self-Selection design, individuals are randomly assigned to the treatment
after having expressed their willingness to receive it. This design is able to
recover the average effect of the Treatment on the Treated (TT).

In order to explain this design clearly, and especially to make it clear how it
differs from the following one (randomization after eligibility), I have to introduce
a slightly more complex selection rule that we have seen so far, one that includes
self-selection, i.e. take-up decisions by agents. We are going to assume that
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Figure 3.4: CLT-based confidence intervals of ˆWW and ˆOLSX for δ = 0.99 over
sample replications for various sample sizes (true confidence intervals in red)

there are two steps in agents’ participation process:

• Eligibility: agents’ eligibility is assessed first, giving rise to a group of
eligible individuals (Ei = 1) and a group of non eligible individuals (Ei = 0).

• Self-selection: eligible agents can then decide whether they want to take-up
the proposed treatment or not. Di = 1 for those who do. Di = 0 for those
who do not. By convention, ineligibles have Di = 0.

Example 3.8. In our numerical example, here are the equations operationalizing
these notions:

Ei = 1[yBi ≤ ȳ]
Di = 1[ᾱ+ θµ̄− Ci︸ ︷︷ ︸

D∗
i

≥ 0 ∧ Ei = 1]

Ci = c̄+ γµi + Vi

Vi ∼ N (0, σ2
V )

Eligibility is still decided based on pre-treatment outcomes being smaller than a
threshold level ȳ. Self-selection among eligibles is decided by the net utility of
the treatment D∗i being positive. Here, the net utility is composed of the average
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gain from the treatment (assuming agents cannot foresee their idiosyncratic
gain from the treatment) ᾱ+ θµ̄ minus the cost of participation Ci. The cost
of participation in turn depends on a constant, on µi and on a random shock
orthogonal to everything else Vi. This cost might represent the administrative
cost of applying for the treatment and the opportunity cost of participating into
the treatment (foregone earnings and/or cost of time). Conditional on eligiblity,
self-selection is endogenous in this model since both the gains and the cost of
participation depend on µi. Costs depend on µi since most productive people
may face lower administrative costs but a higher opportunity cost of time.

Let’s choose some values for the new parameters:
param <- c(param,-6.25,0.9,0.5)
names(param) <- c("barmu","sigma2mu","sigma2U","barY","rho","theta","sigma2epsilon","sigma2eta","delta","baralpha","barc","gamma","sigma2V")

and let’s generate a new dataset:
set.seed(1234)
N <-1000
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
E <- ifelse(YB<=param["barY"],1,0)
V <- rnorm(N,0,param["sigma2V"])
Dstar <- param["baralpha"]+param["theta"]*param["barmu"]-param["barc"]-param["gamma"]*mu-V
Ds <- ifelse(Dstar>=0 & E==1,1,0)
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)

Let’s compute the value of the TT parameter in this new model:

∆y
TT = ᾱ+ θE[µi|µi + UBi ≤ ȳ ∧ ᾱ+ θµ̄− c̄− γµi − Vi ≥ 0]

To compute the expectation of a doubly censored normal, I use the package
tmvtnorm.

(µi, yBi , D∗i ) = N

µ̄, µ̄, ᾱ+ (θ − γ)µ̄− c̄,

 σ2
µ σ2

µ −γσ2
µ

σ2
µ σ2

µ + σ2
U −γσ2

µ

−γσ2
µ −γσ2

µ γ2σ2
µ + σ2

V


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mean.mu.yB.Dstar <- c(param['barmu'],param['barmu'],param['baralpha']- param['barc']+(param['theta']-param['gamma'])*param['barmu'])
cov.mu.yB.Dstar <- matrix(c(param['sigma2mu'],param["sigma2mu"],-param['gamma']*param["sigma2mu"],

param["sigma2mu"],param['sigma2mu']+param['sigma2U'],-param['gamma']*param["sigma2mu"],
-param['gamma']*param["sigma2mu"],-param['gamma']*param["sigma2mu"],param["sigma2mu"]*(param['gamma'])ˆ2+param['sigma2V']),3,3,byrow=TRUE)

lower.cut <- c(-Inf,-Inf,0)
upper.cut <- c(Inf,log(param['barY']),Inf)
moments.cut <- mtmvnorm(mean=mean.mu.yB.Dstar,sigma=cov.mu.yB.Dstar,lower=lower.cut,upper=upper.cut)
delta.y.tt <- param['baralpha']+ param['theta']*moments.cut$tmean[1]
delta.y.ww.self.select <- mean(y[R==1 & Ds==1])-mean(y[R==0 & Ds==1])

The value of ∆y
TT in our illustration is now 0.17.

3.2.1 Identification
In a Self-Selection design, identification requires two assumptions:

Definition 3.3 (Independence Among Self-Selected). We assume that the
randomized allocation of the program among applicants is well done:

Ri ⊥⊥ (Y 0
i , Y

1
i )|Di = 1.

Independence can be enforced by the randomized allocation of the treatment
among the eligible applicants.

We need a second assumption:

Definition 3.4 (Self-Selection design Validity). We assume that the randomized
allocation of the program does not interfere with how potential outcomes and
self-selection are generated:

Yi =
{
Y 1
i if (Ri = 1 and Di = 1)
Y 0
i if (Ri = 0 and Di = 1) or Di = 0

with Y 1
i , Y 0

i and Di the same potential outcomes and self-selection decisions as
in a routine allocation of the treatment.

Under these assumptions, we have the following result:

Theorem 3.2 (Identification in a Self-Selection design). Under Assumptions
3.3 and 3.4, the WW estimator among the self-selected identifies TT:

∆Y
WW |D=1 = ∆Y

TT ,
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with:

∆Y
WW |D=1 = E[Yi|Ri = 1, Di = 1]− E[Yi|Ri = 0, Di = 1].

Proof.

∆Y
WW |D=1 = E[Yi|Ri = 1, Di = 1]− E[Yi|Ri = 0, Di = 1]

= E[Y 1
i |Ri = 1, Di = 1]− E[Y 0

i |Ri = 0, Di = 1]
= E[Y 1

i |Di = 1]− E[Y 0
i |Di = 1]

= E[Y 1
i − Y 0

i |Di = 1],

where the second equality uses Assummption3.4, the third equality Assumption
3.3 and the last equality the linearity of the expectation operator.

Remark. The key intuitions for how the Self-Selection design solves the FPCI
are:

• By allowing for eligibilty and self-selection, we identify the agents that
would benefit from the treatment in routine mode (the treated).

• By randomly denying the treatment to some of the treated, we can estimate
the counterfactual outcome of the treated by looking at the counterfactual
outcome of the denied applicants: E[Y 0

i |Di = 1] = E[Yi|Ri = 0, Di = 1].

Remark. In practice, we use a pseudo-RNG to generate a random allocation
among applicants:

R∗i ∼ U [0, 1]

Ri =
{

1 if R∗i ≤ .5 ∧Di = 1
0 if R∗i > .5 ∧Di = 1

Example 3.9. In our numerical example, the following R code generates two
random groups, one treated and one control, and imposes the Assumption of
Self-Selection design Validity:
#random allocation among self-selected
Rs <- runif(N)
R <- ifelse(Rs<=.5 & Ds==1,1,0)
y <- y1*R+y0*(1-R)
Y <- Y1*R+Y0*(1-R)
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3.2.2 Estimating TT
3.2.2.1 Using the WW Estimator

As in the case of the Brute Force Design, we can use the WW estimator to
estimate the effect of the program with a Self-Selection design, except that this
time the WW estimator is applied among applicants to the program only:

∆̂Y
WW |D=1 = 1∑N

i=1DiRi

N∑
i=1

YiDiRi −
1∑N

i=1Di(1−Ri)

N∑
i=1

DiYi(1−Ri).

Example 3.10. In our numerical example, we can form the WW estimator
among applicants:
delta.y.ww.self.select <- mean(y[R==1 & Ds==1])-mean(y[R==0 & Ds==1])

WW among applicants is equal to 0.085. It is actually rather far from the true
value of 0.17, which reminds us that unbiasedness does not mean that a given
sample will not suffer from a large bias. We just drew a bad sample where
confounders are not very well balanced.

3.2.2.2 Using OLS

As in the Brute Force Design with the ATE, we can estimate the TT parameter
with a Self-Selection design using the OLS estimator. In the following regression
run among applicants only (with Di = 1), β estimates TT:

Yi = α+ βRi + Ui.

As a matter of fact, the OLS estimator without control variables is numerically
equivalent to the WW estimator.

Example 3.11. In our numerical example, here is the OLS regression:
reg.y.R.ols.self.select <- lm(y[Ds==1]~R[Ds==1])

The value of the OLS estimator is 0.085, which is identical to the WW estimator
among applicants.

3.2.2.3 Using OLS Conditioning on Covariates

We might want to condition on covariates in order to reduce the amount of
sampling noise. Parametrically, we can run the following OLS regression among
applicants (with Di = 1):
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Yi = α+ βRi + γ′Xi + Ui.

β estimates the TT.

Needed: proof. Especially check whether we need to center covariates
at the mean of the treatment group. I think so.

We can also use Matching to obtain a nonparametric estimator.

Example 3.12. Let us first compute the OLS estimator conditioning on yBi :
reg.y.R.yB.ols.self.select <- lm(y[Ds==1] ~ R[Ds==1] + yB[Ds==1])

Our estimate of TT after conditioning on yBi is 0.145. Conditioning on yBi has
been able to solve part of the bias of the WW problem estimator.

Let’s now check whether conditioning on OLS has brought an improvement in
terms of decreased sampling noise.
monte.carlo.self.select.ww <- function(s,N,param){
set.seed(s)
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
E <- ifelse(YB<=param["barY"],1,0)
V <- rnorm(N,0,param["sigma2V"])
Dstar <- param["baralpha"]+param["theta"]*param["barmu"]-param["barc"]-param["gamma"]*mu-V
Ds <- ifelse(Dstar>=0 & E==1,1,0)
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)

#random allocation among self-selected
Rs <- runif(N)
R <- ifelse(Rs<=.5 & Ds==1,1,0)
y <- y1*R+y0*(1-R)
Y <- Y1*R+Y0*(1-R)
return(mean(y[R==1 & Ds==1])-mean(y[R==0 & Ds==1]))

}

simuls.self.select.ww.N <- function(N,Nsim,param){
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simuls.self.select.ww <- matrix(unlist(lapply(1:Nsim,monte.carlo.self.select.ww,N=N,param=param)),nrow=Nsim,ncol=1,byrow=TRUE)
colnames(simuls.self.select.ww) <- c('WW')
return(simuls.self.select.ww)

}

sf.simuls.self.select.ww.N <- function(N,Nsim,param){
sfInit(parallel=TRUE,cpus=8)
sim <- matrix(unlist(sfLapply(1:Nsim,monte.carlo.self.select.ww,N=N,param=param)),nrow=Nsim,ncol=1,byrow=TRUE)
sfStop()
colnames(sim) <- c('WW')
return(sim)

}

Nsim <- 1000
#Nsim <- 10
N.sample <- c(100,1000,10000,100000)
#N.sample <- c(100,1000,10000)
#N.sample <- c(100,1000)
#N.sample <- c(100)

simuls.self.select.ww <- lapply(N.sample,sf.simuls.self.select.ww.N,Nsim=Nsim,param=param)
names(simuls.self.select.ww) <- N.sample

monte.carlo.self.select.yB.ww <- function(s,N,param){
set.seed(s)
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
E <- ifelse(YB<=param["barY"],1,0)
V <- rnorm(N,0,param["sigma2V"])
Dstar <- param["baralpha"]+param["theta"]*param["barmu"]-param["barc"]-param["gamma"]*mu-V
Ds <- ifelse(Dstar>=0 & E==1,1,0)
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)

#random allocation among self-selected
Rs <- runif(N)
R <- ifelse(Rs<=.5 & Ds==1,1,0)
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y <- y1*R+y0*(1-R)
Y <- Y1*R+Y0*(1-R)
reg.y.R.yB.ols.self.select <- lm(y[Ds==1] ~ R[Ds==1] + yB[Ds==1])
return(reg.y.R.yB.ols.self.select$coef[2])

}

simuls.self.select.yB.ww.N <- function(N,Nsim,param){
simuls.self.select.yB.ww <- matrix(unlist(lapply(1:Nsim,monte.carlo.self.select.yB.ww,N=N,param=param)),nrow=Nsim,ncol=1,byrow=TRUE)
colnames(simuls.self.select.yB.ww) <- c('WW')
return(simuls.self.select.yB.ww)

}

sf.simuls.self.select.yB.ww.N <- function(N,Nsim,param){
sfInit(parallel=TRUE,cpus=8)
sim <- matrix(unlist(sfLapply(1:Nsim,monte.carlo.self.select.yB.ww,N=N,param=param)),nrow=Nsim,ncol=1,byrow=TRUE)
sfStop()
colnames(sim) <- c('WW')
return(sim)

}

Nsim <- 1000
#Nsim <- 10
N.sample <- c(100,1000,10000,100000)
#N.sample <- c(100,1000,10000)
#N.sample <- c(100,1000)
#N.sample <- c(100)

simuls.self.select.yB.ww <- lapply(N.sample,sf.simuls.self.select.yB.ww.N,Nsim=Nsim,param=param)
names(simuls.self.select.yB.ww) <- N.sample

par(mfrow=c(2,2))
for (i in 1:length(simuls.self.select.ww)){
hist(simuls.self.select.ww[[i]][,'WW'],breaks=30,main=paste('N=',as.character(N.sample[i])),xlab=expression(hat(DeltaˆyWW)),xlim=c(-0.15,0.55))
abline(v=delta.y.tt,col="red")

}
par(mfrow=c(2,2))
for (i in 1:length(simuls.self.select.yB.ww)){
hist(simuls.self.select.yB.ww[[i]][,'WW'],breaks=30,main=paste('N=',as.character(N.sample[i])),xlab=expression(hat(DeltaˆyWW)),xlim=c(-0.15,0.55))
abline(v=delta.y.tt,col="red")

}

Figure 3.5 shows that, in our example, conditioning on covariates improves
precision by the same amount as an increase in sample size by almost one order
of magnitude.
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Figure 3.5: Distribution of the WW and OLSX estimator in a Self-Selection
design over replications of samples of different sizes

3.2.3 Estimating Sampling Noise
In order to estimate precision, we can either use the CLT, deriving sampling
noise from the heteroskedasticity-robust standard error OLS estimates, or we
can use some form of resampling as the bootstrap or randomization inference.

Example 3.13. Let us derive the CLT-based estimates of sampling noise using
the OLS standard errors without conditioning on covariates first. I’m using the
sample size with N = 1000 as an example.
sn.RASS.simuls <- 2*quantile(abs(simuls.self.select.ww[['1000']][,'WW']-delta.y.tt),probs=c(0.99))
sn.RASS.OLS.homo <- 2*qnorm((.99+1)/2)*sqrt(vcov(reg.y.R.ols.self.select)[2,2])
sn.RASS.OLS.hetero <- 2*qnorm((.99+1)/2)*sqrt(vcovHC(reg.y.R.ols.self.select,type='HC2')[2,2])

True 99% sampling noise (from the simulations) is 0.548. 99% sampling noise
estimated using default OLS standard errors is 0.578. 99% sampling noise
estimated using heteroskedasticity robust OLS standard errors is 0.58.

Conditioning on covariates:
sn.RASS.simuls.yB <- 2*quantile(abs(simuls.self.select.yB.ww[['1000']][,'WW']-delta.y.tt),probs=c(0.99))
sn.RASS.OLS.homo.yB <- 2*qnorm((.99+1)/2)*sqrt(vcov(reg.y.R.yB.ols.self.select)[2,2])
sn.RASS.OLS.hetero.yB <- 2*qnorm((.99+1)/2)*sqrt(vcovHC(reg.y.R.yB.ols.self.select,type='HC2')[2,2])

True 99% sampling noise (from the simulations) is 0.295. 99% sampling noise
estimated using default OLS standard errors is 0.294. 99% sampling noise
estimated using heteroskedasticity robust OLS standard errors is 0.299.

3.3 Eligibility design
In an Eligibility design, we randomly select two groups among the eligibles.
Members of the treated group are informed that they are eligible to the program
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and are free to self-select into it. Members of the control group are not enformed
that they are eligible and cannot enroll into the program. In an Eligibility
design, we can still recover the TT despite the fact that we have not randomized
access to the programs among the applicants. This is the magic of instrumental
variables. Let us detail the mechanics of this beautiful result.

3.3.1 Identification
In order to state the identification results in the Randomization After Eligibility
design rigorously, I need to define new potential outcomes:

• Y d,ri is the value of the outcome Y when individual i belongs to the program
group d (d ∈ {0, 1}) and has been randomized in group r (r ∈ {0, 1}).

• Dr
i is the value of the program participation decision when individual i

has been assigned randomly to group r.

3.3.1.1 Identification of TT

In an Eligiblity design, we need three assumptions to ensure identification of the
TT:

Definition 3.5 (Independence Among Eligibles). We assume that the random-
ized allocation of the program among eligibles is well done:

Ri ⊥⊥ (Y 0,0
i , Y 0,1

i , Y 1,0
i , Y 1,1

i , D1
i , D

0
i )|Ei = 1.

Independence can be enforced by the randomized allocation of information about
eligibility among the eligibles.

We need a second assumption:

Definition 3.6 (Randomization After Eligibility Validity). We assume that no
eligibles that has been randomized out can take the treatment and that the
randomized allocation of the program does not interfere with how potential
outcomes and self-selection are generated:

D0
i = 0, ∀i,

Di = D1
iRi + (1−Ri)D0

i

Yi =


Y 1,1
i if (Ri = 1 and Di = 1)
Y 0,1
i if (Ri = 1 and Di = 0)
Y 0,0
i if Ri = 0

with Y 1,1
i , Y 0,1

i , Y 0,0
i , D1

i and D0
i the same potential outcomes and self-selection

decisions as in a routine allocation of the treatment.
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We need a third assumption:

Definition 3.7 (Exclusion Restriction of Eligibility). We assume that there is
no direct effect of being informed about eligibliity to the program on outcomes:

Y 1,1
i = Y 1,0

i = Y 1
i

Y 0,1
i = Y 0,0

i = Y 0
i .

Under these assumptions, we have the following result:

Theorem 3.3 (Identification of TT With Randomization After Eligibility). Un-
der Assumptions 3.5, 3.6 and 3.7, the Bloom estimator among eligibles identifies
TT:

∆Y
Bloom|E=1 = ∆Y

TT ,

with:

∆Y
Bloom|E=1 =

∆Y
WW |E=1

Pr(Di = 1|Ri = 1, Ei = 1)
∆Y
WW |E=1 = E[Yi|Ri = 1, Ei = 1]− E[Yi|Ri = 0, Ei = 1].

Proof. I keep the conditioning on Ei = 1 implicit all along to save notation.

E[Yi|Ri = 1] = E[Y 1,1
i Di + Y 0,1

i (1−Di)|Ri = 1]
= E[Y 0

i +Di(Y 1
i − Y 0

i )|Ri = 1]
= E[Y 0

i |Ri = 1] + E[Y 1
i − Y 0

i |Di = 1, Ri = 1] Pr(Di = 1|Ri = 1)
= E[Y 0

i ] + E[Y 1
i − Y 0

i |Di = 1] Pr(Di = 1|Ri = 1),

where the first equality uses Assumption 3.6, the second equality Assumption
3.7 and the last equality Assumption 3.5 and the fact that Di = 1 ⇒ Ri = 1.
Using the same reasoning, we also have:

E[Yi|Ri = 0] = E[Y 1,0
i Di + Y 0,0

i (1−Di)|Ri = 0]
= E[Y 0

i |Ri = 0]
= E[Y 0

i ].

A direct application of the formula for the Bloom estimator proves the result.
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3.3.1.2 Identification of ITE

The previous proof does not give a lot of intuition of how TT is identified in
the Randomization After Eligibility design. In order to gain more insight, we
are going to decompose the Bloom estimator, and have a look at its numerator.
The numerator of the Bloom estimator is a With/Without comparison, and it
identifies, under fairly light conditions, another causal effect, the Intention to
Treat Effect (ITE).

Let me first define the ITE:

Definition 3.8 (Intention to Treat Effect). In a Randomization After Eligibility
design, the Intention to Treat Effect (ITE) is the effect of receiving information
about eligiblity among eligibles:

∆Y
ITE = E[Y D

1
i ,1

i − Y D
0
i ,0

i |Ei = 1].

Receiving information about eligibility has two impacts, in the general framework
that we have delineated so far: first, it triggers some individuals into the treatment
(those for which D1

i 6= 0); second, it might have a direct effect on outcomes
(Y d,1i 6= Y d,0i ). This second effect is the effect of annoucing eligiblity that does
not goes through participation into the program. For example, it is possible
that announcing eligibility to a retirement program makes me save more for
retirement, even if I end up not taking up the proposed program.

The two causal channels that are at work within the ITE can be seen more
clearly after some manipulations:

∆Y
ITE = E[Y 1,1

i D1
i + Y 0,1

i (1−D1
i )− (Y 1,0

i D0
i + Y 0,0

i (1−D0
i ))|Ei = 1]

= E[Y 1,1
i D1

i + Y 0,1
i (1−D1

i )− (Y 0,0
i (D1

i + 1−D1
i ))|Ei = 1]

= E[(Y 1,1
i − Y 0,0

i )D1
i + (Y 0,1

i − Y 0,0
i )(1−D1

i )|Ei = 1]
= E[Y 1,1

i − Y 0,0
i |D

1
i = 1, Ei = 1] Pr(D1

i = 1|Ei = 1)
+ E[Y 0,1

i − Y 0,0
i |D

1
i = 0, Ei = 1] Pr(D1

i = 0|Ei = 1), (3.1)

where the first equality follows from Assumption 3.6 and the second equality
uses the fact that D0

i = 0, ∀i.

We can now see that the ITE is composed of two terms: the first term captures
the effect of announcing eligibility on those who decide to participate into the
program; the second term captures the effect of announcing eligibility on those
who do not participate into the program. Both of these effects are weighted by
the respective proportions of those reacting to the eligibility annoucement by
participating and by not participating respectively.



3.3. ELIGIBILITY DESIGN 119

Now, in order to see how the ITE “contains” the TT, we can use the following
theorem:

Theorem 3.4 (From ITE to TT). Under Assumptions 3.5, 3.6 and 3.7, ITE is
equal to TT multiplied by the proportion of individuals taking up the treatment
after eligibility has been announced:

∆Y
ITE = ∆Y

TT Pr(D1
i = 1|Ei = 1).

Proof. Under Assumption 3.7, Equation (3.1) becomes:

∆Y
ITE = E[Y 1

i − Y 0
i |D1

i = 1, Ei = 1] Pr(D1
i = 1|Ei = 1)

+ E[Y 0
i − Y 0

i |D1
i = 0, Ei = 1] Pr(D1

i = 0|Ei = 1)
= E[D1

i (Y 1
i − Y 0

i )|Ri = 1, Ei = 1]
= E[Y 1

i − Y 0
i |D1

i = 1, Ri = 1, Ei = 1] Pr(D1
i = 1|Ri = 1, Ei = 1)

= E[Y 1
i − Y 0

i |Di = 1, Ei = 1] Pr(D1
i = 1|Ei = 1),

where the first equality follows from Assumption 3.7, the second from Bayes’
rule and Assumptions 3.5, the third from Bayes’ rule and the last from the fact
that D1

i = 1, Ri = 1⇔ Di = 1.

The previous theorem shows that Assumption 3.7 shuts down any direct effect of
the announcement of eligibility on outcomes. As a consequence of this assumption,
the only impact that an eligibility annoucement has on outcomes is through
participation into the program. Hence, the ITE is equal to TT multiplied by the
proportion of people taking up the treatment when eligibility is announced.

In order to move from the link between TT and ITE to the mechanics of the
Bloom estimator, we need two additional identification results. The first result
shows that ITE can be identified under fairly light conditions by a WW estimator.
The second result shows that the proportion of people taking up the treatment
when eligiblity is announced is also easily estimated from the data.

Theorem 3.5 (Identification of ITE with Randomization After Eligibility). Un-
der Assumptions 3.5 and 3.6, ITE is identified by the With/Without comparison
among eligibles:

∆Y
ITE = ∆Y

WW |E=1.
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Proof.

∆Y
WW |E=1 = E[Yi|Ri = 1, Ei = 1]− E[Yi|Ri = 0, Ei = 1]

= E[Y D
1
i ,1

i |Ri = 1, Ei = 1]− E[Y D
0
i ,0

i |Ri = 0, Ei = 1]

= E[Y D
1
i ,1

i |Ei = 1]− E[Y D
0
i ,0

i |Ei = 1],

where the second equality follows from Assumption 3.6 and the third from
Assumption 3.5.

Theorem 3.6 (Identification of Pr(D1
i = 1|Ei = 1)). Under Assumptions 3.5

and 3.6, Pr(D1
i = 1|Ei = 1) is identified by the proportion of people taking up

the offered treatment when informed about their eligibility status:

Pr(D1
i = 1|Ei = 1) = Pr(Di = 1|Ri = 1, Ei = 1).

Proof.

Pr(Di = 1|Ri = 1, Ei = 1) = Pr(D1
i = 1|Ri = 1, Ei = 1)

= Pr(D1
i = 1|Ei = 1),

where the first equality follows from Assumption 3.6 and the second from
Assumption 3.5.

Corollary 3.1 (Bloom estimator and ITE). It follows from Theorems 3.5 and
3.6 that, under Assumptions 3.5 and 3.6, the Bloom estimator is equal to the
ITE divided by the propotion of agents taking up the program when eligible:

∆Y
Bloom|E=1 = ∆Y

ITE

Pr(D1
i = 1|Ei = 1) .

As a consequence of Corollary 3.1, we see that the Bloom estimator reweights
the ITE, the effect of receiving information about eligibility, by the proportion of
people reacting to the eligibility by participating in the program. From Theorem
3.4, we know that this ratio will be equal to TT if the Assumption 3.7 also
holds, so that all the impact of the eligibility annoucement stems from entering
the program. The eligibility annoucement serves as an instrument for program
participation.

Remark. The design using Randomization After Eligibility seems like magic. You
do not assign randomly the program, but information about the eligiblity status,
but you can recover the effect of the program anyway. How does this magic
work? Randomization After Eligibility is also less intrusive than Self-Selection
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design. With the latter design, you have to actively send away individuals
that have expressed an interest for entering the program. This is harsh. With
Randomization After Eligibility, you do not have to send away people expressing
interest after being informed. And it seems that you are not paying a price for
that, since you are able to recover the same TT parameter. Well, actually, you
are going to pay a price in terms of larger sampling noise.

The intuition for all that can be delineated using the very same apparatus that
we have developed so far. So here goes. Under the assumptions made so far, it
is easy to show that (omitting the conditioning on Ei = 1 for simplicity):

∆Y
WW |E=1 = E[Y 1,1

i |D
1
i = 1, Ri = 1] Pr(D1

i = 1|Ri = 1)

− E[Y 0,0
i |D

1
i = 1, Ri = 0] Pr(D1

i = 1|Ri = 0)
+ E[Y 0,1

i |D
1
i = 0, Ri = 1] Pr(D1

i = 0|Ri = 1)
− E[Y 0,0

i |D
1
i = 0, Ri = 0] Pr(D1

i = 0|Ri = 0).

The first part of the equation is due to the difference in outcomes between the
two treatment arms for people that take up the program when eligibility is
announced. The second part is due to the difference in outcomes between the
two treatment arms for people that do not take up the program when eligibility
is announced. This second part cancels out under Assumption 3.5 and 3.7.

But this cancelling out only happens in the population. In a given sample, the
sample equivalents to the two members of the second part of the equation do not
have to be equal, and thus they do not cancel out, generating additional sampling
noise compared to the Self-Selection design. Indeed, in the Self-Selection design,
you observe the population with D1

i = 1 in both the treatment and control arms
(you actually observe this population before randomizing the treatment within
it), and you can enforce that the effect on D1

i = 0 should be zero, under your
assumptions. In an Eligibility design, you do not observe the population with
D1
i = 1 in the control arm, and you cannot enforce the equality of the outcomes

for those with D1
i = 0 present in both arms. You have to rely on the sampling

estimates to make this cancellation, and that generates sampling noise.

Remark. In practice, we use a pseudo-RNG to allocate the randomized annouce-
ment of the eligibility status:

R∗i ∼ U [0, 1]

Ri =
{

1 if R∗i ≤ .5 ∧ Ei = 1
0 if R∗i > .5 ∧ Ei = 1

Di = 1[ᾱ+ θµ̄− Ci ≥ 0 ∧ Ei = 1 ∧Ri = 1]
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Example 3.14. In our numerical example, we can actually use the same sample
as we did for Self-Selection design. I have to generate it again, though, since I
am going to allocate Ri differently.
set.seed(1234)
N <-1000
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
E <- ifelse(YB<=param["barY"],1,0)
V <- rnorm(N,0,param["sigma2V"])
Dindex <- param["baralpha"]+param["theta"]*param["barmu"]-param["barc"]-param["gamma"]*mu-V
Dstar <- ifelse(Dindex>=0 & E==1,1,0)
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)

The value of TT in our example is the same as the one in the Self-Selection
design case. TT in the population is equal to 0.17.

Let’s now compute the value of ITE in the population. In our model, exclusion
restriction holds, so that we can use the fact that ITE = TT Pr(D1

i = 1|Ei = 1).
We thus only need to compute Pr(D1

i = 1|Ei = 1):

Pr(D1
i = 1|Ei = 1) = Pr(D∗i ≥ 0|yBi ≤ ȳ).

I can again use the package tmvtnorm to compute that probability. It is indeed
equal to 1 − Pr(D∗i < 0|yBi ≤ ȳ), where Pr(D∗i < 0|yBi ≤ ȳ) is the cumulative
density of D∗i conditional on yBi ≤ ȳ, i.e. the marginal cumulative of the third
variable of the truncated trivariate normal (µi, yBi , D∗i ) where the first variable
is not truncated and the second one is truncated at ȳ.
lower.cut <- c(-Inf,-Inf,-Inf)
upper.cut <- c(Inf,log(param['barY']),Inf)
prD1.elig <- 1-ptmvnorm.marginal(xn=0,n=3,mean=mean.mu.yB.Dstar,sigma=cov.mu.yB.Dstar,lower=lower.cut,upper=upper.cut)
delta.y.ite <- delta.y.tt*prD1.elig

Pr(D1
i = 1|Ei = 1) = 0.459. As a consequence, ITE in the population is equal

to 0.17 * 0.459 ≈ 0.078. In the sample, the value of ITE and TT are equal to:
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delta.y.tt.sample <- mean(y1[E==1 & Dstar==1]-y0[E==1 & Dstar==1])
delta.y.ite.sample <- delta.y.tt.sample*mean(Dstar[E==1])

∆y
ITEs

= 0.068 and ∆y
TTs

= 0.187.

Now, we can allocate the randomized treatment and let potential outcomes be
realized:
#random allocation among eligibles
Rs <- runif(N)
R <- ifelse(Rs<=.5 & E==1,1,0)
Ds <- ifelse(Dindex>=0 & E==1 & R==1,1,0)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)

3.3.2 Estimating the ITE and the TT
In general, we start the analysis of an Eligibility design by estimating the ITE.
Then, we provide the TT by dividing the ITE by the proportion of participants
among the eligibles.

Actually, this procedure is akin to an instrumental variables estimator and we will
see that the Bloom estimator is actually an IV estimator. The ITE estimation
step corresponds to the reduced form in a classical IV approach. Estimation of
the proportion of participants is the first stage in a IV approach. Estimation of
the TT corresponds to the structural equation step of an IV procedure.

3.3.2.1 Estimating the ITE

Estimation of the ITE relies on the WW estimator, in general implemented
using OLS. It is similar to the estimation of ATE and TT in the Brute Force
and Self-Selection designs.

3.3.2.1.1 Using the WW estimator Estimation of the ITE can be based
on the WW estimator among eligibles.

∆̂Y
WW |E=1 = 1∑N

i=1EiRi

N∑
i=1

YiEiRi −
1∑N

i=1Ei(1−Ri)

N∑
i=1

EiYi(1−Ri).

Example 3.15. In our numerical example, we can form the WW estimator
among eligibles:
delta.y.ww.elig <- mean(y[R==1 & E==1])-mean(y[R==0 & E==1])

WW among eligibles is equal to 0.069.
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3.3.2.1.2 Using OLS As we have already seen before, the WW estimator is
equivalent to OLS with one constant and no control variables. As a consequence,
we can estimate the ITE using the OLS estimate of β in the following regression
run on the sample with Ei = 1:

Yi = α+ βRi + Ui.

By construction, β̂OLSR|E=1 = ∆̂Y
WW |E=1.

Example 3.16. In our numerical example, we can form the WW estimator
among eligibles:
reg.y.ols.elig <- lm(y[E==1]~R[E==1])
delta.y.ols.elig <- reg.y.ols.elig$coef[2]

β̂OLSR|E=1 is equal to 0.069. Remember that ITE in the population is equal to
0.078.

3.3.2.1.3 Using OLS conditioning on covariates Again, as in the pre-
vious designs, we can compute ITE by using OLS conditional on covariates.
Parametrically, we can run the following OLS regression among eligibles (with
Ei = 1):

Yi = α+ βRi + γ′Xi + Ui.

The OLS estimate of β estimates the ITE.

Again: Needed: proof. Especially check whether we need to center
covariates at the mean of the treatment group. I think so.

We can also use Matching to obtain a nonparametric estimator.

Example 3.17. Let us compute the OLS estimator conditioning on yBi :
reg.y.R.yB.ols.elig <- lm(y[E==1] ~ R[E==1] + yB[E==1])

Our estimate of ITE after conditioning on yBi is 0.065. I do not have time to
run the simulations, but it is highly likely that the sampling noise is lower after
conditioning on yBi .

I do not have time to run the simulations, but it is highly likely that
the sampling noise is lower after conditioning on yBi .

3.3.2.2 Estimating TT

We can estimate TT either using the Bloom estimator, or using the IV estimator,
which is equivalent to a Bloom estimator in the Eligibility design.
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3.3.2.2.1 Using the Bloom estimator Using the Bloom estimator, we
simply compute the numerator of the Bloom estimator and divide it by the
estimated proportion of eligible individuals with Ri = 1 that have chosen to take
the program.

∆̂Y
WW |D=1 =

1∑N

i=1
EiRi

∑N
i=1 YiEiRi −

1∑N

i=1
Ei(1−Ri)

∑N
i=1EiYi(1−Ri)

1∑N

i=1
EiRi

∑N
i=1DiEiRi

.

Example 3.18. Let’s see how the Boom estimator works in our example.

The numerator of the Bloom estimator is the ITE that we have just computed:
0.069. The denominator of the Bloom estimator is equal to the proportion of
eligible individuals with Ri = 1 that have chosen to take the program: 0.342.
delta.y.R.bloom.elig <- (mean(y[R==1 & E==1])-mean(y[R==0 & E==1]))/mean(Ds[R==1 & E==1])

The resulting estimate of TT is 0.203. It is rather far from the population or
sample estimates: 0.17 and 0.187 respectively. What happened? The error
seems to come from noise in the denominator of the Bloom estimator. In the
ITE estimation, the true ITEs in the population and sample are 0.078 and
0.068 respectively and our estimate is equal to 0.069, so that’s fine. In the
denominator, the proportion of randomized eligibles that take the program is
equal to 0.342 while the true proportions in the population and in the sample
are 0.459 and 0.364 respectively. So we do not have enough invited eligibles
getting into the program, and the ones who do have unusually large outcomes.
These two sampling errors combine to blow up the estimate of TT.

3.3.2.2.2 Using IV There is a very useful results, similar to the one stating
that the WW estimator is equivalent to an OLS estimator: in the Eligiblity
design, the Bloom estimator is equivalent to an IV estimator:

Theorem 3.7 (Bloom is IV). Under the assumption that there is at least one
individual with Ri = 1 and with Di = 1, the coefficient β in the following
regression estimated among eligibles using Ri as an IV

Yi = α+ βDi + Ui

is the Bloom estimator in the Eligibility Design:
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β̂IV =

1∑N

i=1
Ei

∑N
i=1Ei

(
Yi − 1∑N

i=1
Ei

∑N
i=1EiYi

)(
Ri − 1∑N

i=1
Ei

∑N
i=1EiRi

)
1∑N

i=1
Ei

∑N
i=1Ei

(
Di − 1∑N

i=1
Ei

∑N
i=1EiDi

)(
Ri − 1∑N

i=1
Ei

∑N
i=1EiRi

)

=

1∑N

i=1
EiRi

∑N
i=1 YiRiEi −

1∑N

i=1
(1−Ri)Ei

∑N
i=1 Yi(1−Ri)Ei

1∑N

i=1
EiRi

∑N
i=1DiRiEi

.

Proof. The proof is straightforward using Theorem 3.15 below and setting Di = 0
when Ri = 0.

Example 3.19. In our numerical example, we have:
reg.y.R.2sls.elig <- ivreg(y[E==1]~Ds[E==1]|R[E==1])

β̂IV = 0.203 which is indeed equal to the Bloom estimator (∆̂y
Bloom = 0.203).

3.3.2.2.3 Using IV conditional on covariates We can improve on the
precision of our 2SLS estimator by conditioning on observed covariates. Para-
metrically estimating the following equation with Ri and Xi as instruments on
the sample with Ei = 1:

Yi = α+ βDi + γ′Xi + Ui.

Proof? Do we need to center covariates to their mean in the treatment
group?

Nonparametric estimation using Frolich’s Wald matching estimator.}

Example 3.20. In our numerical example, we have:
reg.y.R.yB.2sls.elig <- ivreg(y[E==1] ~ Ds[E==1] + yB[E==1] | R[E==1] + yB[E==1])

As a consequence, ∆̂y
Bloom(X) = 0.191.

Does conditioning on covariates improve precision? Let’s run some Monte-Carlo
somulations in order to check for that.
monte.carlo.elig <- function(s,N,param){
set.seed(s)
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
E <- ifelse(YB<=param["barY"],1,0)
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V <- rnorm(N,0,param["sigma2V"])
Dindex <- param["baralpha"]+param["theta"]*param["barmu"]-param["barc"]-param["gamma"]*mu-V
Dstar <- ifelse(Dindex>=0 & E==1,1,0)
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)

#random allocation among self-selected
Rs <- runif(N)
R <- ifelse(Rs<=.5 & E==1,1,0)
Ds <- ifelse(Dindex>=0 & E==1 & R==1,1,0)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)
reg.y.R.2sls.elig <- ivreg(y[E==1]~Ds[E==1]|R[E==1])
return(reg.y.R.2sls.elig$coef[2])

}

simuls.elig.N <- function(N,Nsim,param){
simuls.elig <- matrix(unlist(lapply(1:Nsim,monte.carlo.elig,N=N,param=param)),nrow=Nsim,ncol=1,byrow=TRUE)
colnames(simuls.elig) <- c('Bloom')
return(simuls.elig)

}

sf.simuls.elig.N <- function(N,Nsim,param){
sfInit(parallel=TRUE,cpus=8)
sfLibrary(AER)
sim <- matrix(unlist(sfLapply(1:Nsim,monte.carlo.elig,N=N,param=param)),nrow=Nsim,ncol=1,byrow=TRUE)
sfStop()
colnames(sim) <- c('Bloom')
return(sim)

}

Nsim <- 1000
#Nsim <- 10
#N.sample <- c(100,1000,10000,100000)
N.sample <- c(1000,10000,100000)
#N.sample <- c(100,1000)
#N.sample <- c(100)

simuls.elig <- lapply(N.sample,sf.simuls.elig.N,Nsim=Nsim,param=param)
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names(simuls.elig) <- N.sample

monte.carlo.elig.yB <- function(s,N,param){
set.seed(s)
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
E <- ifelse(YB<=param["barY"],1,0)
V <- rnorm(N,0,param["sigma2V"])
Dindex <- param["baralpha"]+param["theta"]*param["barmu"]-param["barc"]-param["gamma"]*mu-V
Dstar <- ifelse(Dindex>=0 & E==1,1,0)
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)

#random allocation among self-selected
Rs <- runif(N)
R <- ifelse(Rs<=.5 & E==1,1,0)
Ds <- ifelse(Dindex>=0 & E==1 & R==1,1,0)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)
reg.y.R.yB.2sls.elig <- ivreg(y[E==1] ~ Ds[E==1] + yB[E==1] | R[E==1] + yB[E==1])
return(reg.y.R.yB.2sls.elig$coef[2])

}

simuls.elig.yB.N <- function(N,Nsim,param){
simuls.elig.yB <- matrix(unlist(lapply(1:Nsim,monte.carlo.elig.yB,N=N,param=param)),nrow=Nsim,ncol=1,byrow=TRUE)
colnames(simuls.elig.yB) <- c('Bloom')
return(simuls.elig.yB)

}

sf.simuls.elig.yB.N <- function(N,Nsim,param){
sfInit(parallel=TRUE,cpus=8)
sfLibrary(AER)
sim <- matrix(unlist(sfLapply(1:Nsim,monte.carlo.elig.yB,N=N,param=param)),nrow=Nsim,ncol=1,byrow=TRUE)
sfStop()
colnames(sim) <- c('Bloom')
return(sim)

}
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Nsim <- 1000
#Nsim <- 10
#N.sample <- c(100,1000,10000,100000)
N.sample <- c(1000,10000,100000)
#N.sample <- c(100,1000)
#N.sample <- c(100)

simuls.elig.yB <- lapply(N.sample,sf.simuls.elig.yB.N,Nsim=Nsim,param=param)
names(simuls.elig.yB) <- N.sample

par(mfrow=c(2,2))
for (i in 1:length(simuls.elig)){
hist(simuls.elig[[i]][,'Bloom'],breaks=30,main=paste('N=',as.character(N.sample[i])),xlab=expression(hat(DeltaˆyBloom)),xlim=c(-0.15,0.55))
abline(v=delta.y.tt,col="red")

}
par(mfrow=c(2,2))
for (i in 1:length(simuls.elig.yB)){
hist(simuls.elig.yB[[i]][,'Bloom'],breaks=30,main=paste('N=',as.character(N.sample[i])),xlab=expression(hat(DeltaˆyBloom)),xlim=c(-0.15,0.55))
abline(v=delta.y.tt,col="red")

}
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Figure 3.6: Distribution of the Bloom and Bloom(X) estimators with random-
ization after eligibility over replications of samples of different sizes

We can take three things from Figure 3.6:

1. Problems with the IV estimator appear with N = 100 (probably because
there are some samples where no one is treated).

2. Sampling noise from randomization after eligibility is indeed larger than
sampling noise from Self-Selection design.

3. Conditioning on covariates helps.
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3.3.3 Estimating sampling noise
As always, we can estimate samling noise either using the CLT or resampling
methods. Using the CLT, we can derive the following formula for the distribution
of the Bloom estimator:

Theorem 3.8 (Asymptotic Distribution of ∆̂Y
Bloom). Under Assumptions 3.5,

3.6 and 3.7 and assuming that there is at least one individual with Ri = 1 and one
individual with Di = 1, we have (keeping the conditioning on Ei = 1 implicit):

√
N(∆̂Y

Bloom −∆Y
TT ) d→ N

(
0, 1

(pD1 )2

[(
pD

pR

)2 V[Yi|Ri = 0]
1− pR +

(
1− pD

1− pR

)2 V[Yi|Ri = 1]
pR

])
,

with pD = Pr(Di = 1), pR = Pr(Ri = 1) and (pD1 = Pr(Di = 1|Ri = 1).

Proof. The proof is immediate using Theorem 3.16, setting pAT = 0.

Remark. Theorem 3.8 shows that there is a price to pay for not randomizing
after self-selection. This price is a decrease in precision. The variance of the
estimator is weighted by 1

(Pr(Di=1|Ri=1))2 . This means that the effective sample
size is equal to the number of individuals that take up the treatment when
offered. We generaly call these individuals “compliers,” since they comply with
the treatment assignment. Sampling noise is of the same order of magnitude as
the number of compliers You might have very low precision despite a very large
sample size if you have a very small proportion of compliers.

Remark. In order to compute an estimate of the sampling noise of the Bloom
estimator, we can either use the plug-in formula from Theorem 3.8 or use the IV
standard errors robust to heteroskedasticity. Here is a simple function in order
to compute the plug-in estimator:
var.RAE.plugin <- function(pD1,pD,pR,V0,V1,N){

return(((pD/pR)ˆ2*(V0/(1-pR))+((1-pD)/(1-pR))ˆ2*(V1/pR))/(N*pD1ˆ2))
}

Example 3.21. Let us derive the CLT-based estimates of sampling noise using
both the plug-in estimator and the IV standard errors without conditioning on
covariates first. For the sake of the example, I’m working with a sample of size
N = 1000.
sn.RAE.simuls <- 2*quantile(abs(simuls.elig[['1000']][,'Bloom']-delta.y.tt),probs=c(0.99))
sn.RAE.IV.plugin <- 2*qnorm((.99+1)/2)*sqrt(var.RAE.plugin(pD1=mean(Ds[E==1 & R==1]),pD=mean(Ds[E==1]),pR=mean(R[E==1]),V0=var(y[R==0 & E==1]),V1=var(y[R==1 & E==1]),N=length(y[E==1])))
sn.RAE.IV.homo <- 2*qnorm((.99+1)/2)*sqrt(vcov(reg.y.R.2sls.elig)[2,2])
sn.RAE.IV.hetero <- 2*qnorm((.99+1)/2)*sqrt(vcovHC(reg.y.R.2sls.elig,type='HC2')[2,2])

True 99% sampling noise (from the simulations) is 0.757. 99% sampling noise
estimated using the plug-in estimator is 0.921. 99% sampling noise estimated
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using default IV standard errors is 1.069. 99% sampling noise estimated using
heteroskedasticity robust IV standard errors is 0.92.

Conditioning on covariates:
sn.RAE.simuls.yB <- 2*quantile(abs(simuls.elig.yB[['1000']][,'Bloom']-delta.y.tt),probs=c(0.99))
sn.RAE.IV.homo.yB <- 2*qnorm((.99+1)/2)*sqrt(vcov(reg.y.R.yB.2sls.elig)[2,2])
sn.RAE.IV.hetero.yB <- 2*qnorm((.99+1)/2)*sqrt(vcovHC(reg.y.R.yB.2sls.elig,type='HC2')[2,2])

True 99% sampling noise (from the simulations) is 0.393. 99% sampling noise
estimated using default IV standard errors is 0.457. 99% sampling noise estimated
using heteroskedasticity robust IV standard errors is 0.454.

Remark. Sampling noise in the Randomization After Eligibility design seems
larger than sampling noise in the Self-Selection design.

In the Self-Selection design, sampling noise with N = 1000 is equal to 0.55. In
the Eligibility design, sampling noise with N = 1000 is equal to 0.76. Why such
a difference? Both designs have the same effective sample size.

In the Self-Selection design, the effective sample size NSS
e is the number of

eligible individuals that apply to take up the program: NSS
e = N Pr(Di =

1|Ei = 1) Pr(Ei = 1). In our example, NSS
e = 1000∗ 0.459 ∗ 0.218 = 100.

In the Eligibility design, the sample size on which the regressions are performed
is NE , the number of eligible individuals: NE = N Pr(Ei = 1). In our example,
NE = 1000∗ 0.459 = 459. But the effective sample size for the Randomization
After Eligibility design is actually equal to the one in the Self-Selection design
because only compliers matter for the precision of the Bloom estimator, as
Theorem 3.8 shows. Thus NSS

e = NE
e .

Why then is sampling noise much larger in the Randomization After Eligibility
design? Probably because the Bloom estimator cannot enforce the fact that the
impact of the program on non compliers is zero. It has to estimate the average
outcome of non compliers in both treatment arms and hope that they cancel. In
real samples, they won’t, increasing the size of sampling noise.

3.4 Encouragement Design
In an Encouragement Design, we randomly select two groups among the eligibles,
as in Randomization After Eligibility. Treated individuals randomly receive an
encouragement to participate in the program and decide whether they want to
comply with the encouragement and join the program. Individuals in the control
group do not receive an encouragement, but they can still decide to self-select in
the program. The Encouragement design differs from the Randomization After
Eligibility design mainly by not barring entry into the programs to individuals
in the control group. If successful, the encouragement generates a higher level
of take up of the program in the treatment group than in the control group.
Examples of encouragements are additional reminders that the program exists,
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help in subscribing the program, financial incentives for subscribing the program,
etc.

In an Encouragement Design, we can recover the causal effect of the treatment
not on all the treated but on the treated whose participation into the program
has been triggered by the encouragement. The individuals reacting to the
encouragement by participating in the program are usually called compliers. The
effect of the treatment on the compliers is called the Local Average Treatment
Effect. The main identification result for Encouragement designs is that a Wald
ratio (an IV estimator) recovers the LATE. It is due to Imbens and Angrist
(1994). A key assumption for this result is exclusion restriction: there has to be
zero impact of the encouragement on the outcome, except through participation
in the treatment. A second key assumption is that no one individual is driven
away from participating in the treatment because of the encouragement. This
assumption is called monotonicity.

Let’s detail these assumptions, the identification result and the estimation
strategy.

3.4.1 Identification
3.4.1.1 Identification of the Local Average Treatment Effect

Before stating the identification results, let’s go through some definitions and
assumptions. We are going to denote Ri = 1 when individual i receives the
encouragement and Ri = 0 when she does not. As in Section 3.3, we have
four potential outcomes for Yi: Y d,ri , (d, r) ∈ {0, 1}2, where d denotes receiving
the treatment and r receiving the encouragement. We also have two potential
outcomes for Di: Dr

i , r ∈ {0, 1}. D1
i indicates whether individual i takes the

treatment when receving the encouragement and D0
i whether she takes the

treatment when not receiving the encouragement. These potential outcomes
define four possible types of individuals, that I’m going to denote with the
random variable Ti:

• Always takers, who take up the program whether they receive the en-
couragement or not. They are such that D1

i = D0
i = 1. I denote them

Ti = a.
• Never takers, who do not take up the program whether they receive the

encouragement or not. They are such that D1
i = D0

i = 0. I denote them
Ti = n.

• Compliers, who take up the program when they receive the encouragement
and do not when they do not receive the encouragement. They are such
that D1

i −D0
i = 1. I denote them Ti = c.

• Defiers, who do not take up the program when they receive the encour-
agement and take it up when they do not receive the encouragement. They
are such that D1

i −D0
i = −1. I denote them Ti = d.

We are now ready to state the assumptions needed for identification of the LATE.
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Definition 3.9 (Encouragement Validity). We assume that the randomized
allocation of the program does not interfere with how potential outcomes and
self-selection are generated:

Di = D1
iRi + (1−Ri)D0

i

Yi =


Y 1,1
i if (Ri = 1 and Di = 1)
Y 0,1
i if (Ri = 1 and Di = 0)
Y 1,0
i if (Ri = 0 and Di = 1)
Y 0,0
i if (Ri = 0 and Di = 0)

with Y 1,1
i , Y 0,1

i , Y 1,0
i , Y 0,0

i , D1
i and D0

i the same potential outcomes and self-
selection decisions as in a routine allocation of the treatment.

Definition 3.10 (Independence of Encouragement). We assume that the ran-
domized allocation of the program is well done:

(Y 1,1
i , Y 0,1

i , Y 0,0
i , Y 1,0

i , D1
i , D

0
i ) ⊥⊥ Ri|Ei = 1.

Definition 3.11 (Exclusion Restriction). We assume that the randomized
allocation of the program does not alter potential outcomes:

Y d,ri = Y di , ∀(r, d) ∈ {0, 1}2 .

Definition 3.12 (First Stage). We assume that the encouragement does manage
to increase participation:

Pr(Di = 1|Ri = 1, Ei = 1) > Pr(Di = 1|Ri = 0, Ei = 1).

Definition 3.13 (Monotonicity). We assume that the encouragement either
increases participation for everyone or decreases participation for everyone:

either ∀i, D1
i ≥ D0

i or ∀i, D1
i ≤ D0

i .

Assumption 3.13 means that we cannot have simultaneously individuals that are
pushed by the encouragement into the treatment and individuals that are pushed
out of the treatment. As a consequence, there cannot be compliers and defiers
at the same time. There can only be compliers or defiers. For simplicity, in what
follows, I assume that there are no defiers. This is without loss of generality,
since, under Assumption 3.13, a redefinition of the treatment (D̃i = −Di) moves
the model in this section from one with only defiers to one with only compliers.
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Theorem 3.9 (Identification in an Encouragement Design). Under Assumptions
3.9, 3.10, 3.11, 3.12 and 3.13, the Wald estimator identifies the LATE:

∆Y
Wald = ∆Y

LATE ,

with:

∆Y
Wald = E[Yi|Ri = 1, Ei = 1]− E[Yi|Ri = 0, Ei = 1]

Pr(Di = 1|Ri = 1, Ei = 1)− Pr(Di = 1|Ri = 0, Ei = 1)
∆Y
LATE = E[Y 1

i − Y 0
i |Ti = c, Ei = 1].

Proof. See Section A.2.1.

Remark. Theorem 3.9 is pretty amazing. It shows that there exists a set of
assumptions under which we can use an encouragement design to recover the
effect of the treatment (Di) on outcomes, despite the fact that we have NOT
randomized Di. The assumptions needed for that to happen are intuitive:

1. The encouragement has to have no direct effect on the outcomes (Assump-
tion 3.11)

2. The encouragement has to have an effect on treatment uptake (Assumption
3.12)

3. The encouragement does not generate two-way flows in and out of the
treatment, but only a one-way flow (Assumption 3.13)

Under these assumptions, the only way that we can see a difference in outcomes
between those that receive the encouragement and those that do not is that
the treatment has had an effect on those that have taken it because of the
encouragement. It cannot be because of the encouragement itself, because
of Assumption 3.11. It cannot be because some people with particularly low
outcomes have exited the program because of the encouragement, Assumption
3.13 forbids it. And if we see no effect of the encouragement, it has to be that
the treatment has no effect on the compliers as well, because Assumption 3.12
implies that they have received the treatment in the encouragement group and
that they have not in the group without encouragement.

Remark. Less nice with Theorem 3.9 is that we recover the effect only for a
subgroup of individuals, the compliers. This raises two issues:

1. The effect on the compliers (or LATE) is not the effect on the treated (TT).
When the treatment is given in routine mode, without the encouragement,
TT is actually equal to the effect on the always takers. There is nothing
that tells us that the always takers react in the same way to the treatment
as the compliers. As soon as the expected benefits of the treatment enter
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the decision of taking it up, always takers have larger treatment effects
than compliers.

2. The identity of the compliers is unobserved. We cannot decide to allocate
the treatment only to the compliers because they are defined by their
counterfactual response to the encouragement. In both treatment arms,
we do not know who the compliers are. We know they are among those
who take up the program in the group receiving the encouragement. But
there are also always takers that take up the program in this group. We
know that they are among those that do not take up the program in the
group that does not receive the encouragement. But never takers behave
in the same way in that group.

The only way to direct the treatment at the compliers is to use the encouragement.
So, we end up evaluating the effect of the encouragement itself and not of the
program. In that case, we do not need Assumptions 3.11, 3.12 and 3.13, because
they are not needed to identify the effect of the encouragement (see Section
3.4.1.2 below).

In general, researchers believe that LATE tells them something about the
magnitude of the effect beyond compliers. This is not warranted by the maths,
but one can understand how a bayesian decision-maker may use the information
from some subpopulation to infer what would happen to another. Comparing
LATEs and TTs for similar treatments is an active area for reasearch. I know of
no paper doing that extensively and nicely.

To generalize from the LATE to the TT, we can make the assumption that the
impact on always takers is equal to the impact on compliers, but that seems a
little far-fetched. Angrist and Fernandez-Val propose to assume that the effect
on compliers is equal to the effect on always takers conditional on some observed
covariates. When outcomes are bounded (for example because they are between
zero and one), we can try to bound the TT using the LATE (see Huber, Laffers
and Mellace (2017)).

Remark. If you see a connexion between the conditions for the Wald estimator
to identify LATE and the assumptions behind an IV estimator, you’re correct.
The Wald estimator is actually an IV estimator (see Theorem 3.15 below).

3.4.1.2 Identification of the Intention to Treat Effect

In this section, we are going to delineate how to identify the Intention to
Treat Effect (ITE) in an Encouragement design. In an Encouragement design,
ITE is the effect of receiving the encouragement. It is defined in a similar
manner as in a Randomization After Eligibility design (see Definition 3.8):
∆Y
ITE = E[Y D

1
i ,1

i − Y D
0
i ,0

i |Ei = 1].

Under Assumption 3.9, receiving the encouragement has several impacts:

1. Some individuals (the compliers) decide to enter the program,
2. Some individuals (the defiers) decide to exit the program,

https://www.nber.org/papers/w16566
https://onlinelibrary.wiley.com/doi/abs/10.1002/jae.2473
https://onlinelibrary.wiley.com/doi/abs/10.1002/jae.2473
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3. The encouragement might have a direct effect on outcomes (Y d,1i 6= Y d,0i ).

This last effect is the effect of receiving the encouragement that does not goes
through participation into the program. For example, it is possible that sending
an encouragement to take up a retirement program makes me save more for
retirement, even if I end up not taking up the proposed program.

The two causal channels that are at work within the ITE can be seen more clearly
when decomposing the ITE to make each type appear. We can do that because
the four types define a partition of the sample space, that is a collection of
mutually exclusive events whose union spans the whole space. As a consequence
of that, conditioning on the union of the four types is the same thing as not
conditioning on anything. Using this trick, we have:

∆Y
ITE = E[Y D

1
i ,1

i − Y D
0
i ,0

i |(Ti = a ∪ Ti = c ∪ Ti = d ∪ Ti = n) ∩ Ei = 1]

= E[Y D
1
i ,1

i − Y D
0
i ,0

i |Ti = a,Ei = 1] Pr(Ti = a|Ei = 1)

+ E[Y D
1
i ,1

i − Y D
0
i ,0

i |Ti = c, Ei = 1] Pr(Ti = c|Ei = 1)

+ E[Y D
1
i ,1

i − Y D
0
i ,0

i |Ti = d,Ei = 1] Pr(Ti = d|Ei = 1)

+ E[Y D
1
i ,1

i − Y D
0
i ,0

i |Ti = n,Ei = 1] Pr(Ti = n|Ei = 1)
= E[Y 1,1

i − Y 1,0
i |Ti = a,Ei = 1] Pr(Ti = a|Ei = 1)

+ E[Y 1,1
i − Y 0,0

i |Ti = c, Ei = 1] Pr(Ti = c|Ei = 1)
+ E[Y 0,1

i − Y 1,0
i |Ti = d,Ei = 1] Pr(Ti = d|Ei = 1)

+ E[Y 0,1
i − Y 0,0

i |Ti = n,Ei = 1] Pr(Ti = n|Ei = 1), (3.2)

where the first equality follows from the four types defining a partition of the
sample space, the second equality from the usual rule of conditional expectations
and the fact that types are disjoint events, and the third equality from Assumption
3.6.

We can now see that ITE is composed of four terms:

1. The effect of receiving the encouragment on the always takers. This effect
is only the direct effect of the encouragement, and not the effect of the
program since the always takers always take the program. This term cancels
under Assumption 3.11, when there is no direct effect of the encouragement
on outcomes.

2. The effect of receiving the encouragement on compliers. This is both the
effect of the encouragement and of the program. This is equal to the LATE
under Assumption 3.11.

3. The effect of receiving the encouragement on defiers. This is the difference
between the direct effect of the encouragement and the effect of the program.
This is equal to the opposite of the effect of the treatment on the defiers
under Assumption 3.11.
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4. The effect of receiving the encouragement on never takers. This effect
is only the direct effect of the encouragement, and not the effect of the
program since the never takers never take the program. This term cancels
under Assumption 3.11.

All these effects are weighted by the respective proportions of the types in the
population. ITE is linked to LATE. This link can be made clearer:

Theorem 3.10 (From ITE to Compliers and Defiers). Under Assumptions 3.9
and 3.11, ITE is equal to the effect on compliers minus the effect on defiers
weighted by their respective proportions in the population:

∆Y
ITE = E[Y 1

i − Y 0
i |Ti = c, Ei = 1] Pr(Ti = c|Ei = 1)

− E[Y 1
i − Y 0

i |Ti = d,Ei = 1] Pr(Ti = d|Ei = 1).

Proof. Under Assumption 3.11, Equation (3.2) becomes:

∆Y
ITE = E[Y 1

i − Y 1
i |Ti = a,Ei = 1] Pr(Ti = a|Ei = 1)

+ E[Y 1
i − Y 0

i |Ti = c, Ei = 1] Pr(Ti = c|Ei = 1)
+ E[Y 0

i − Y 1
i |Ti = d,Ei = 1] Pr(Ti = d|Ei = 1)

+ E[Y 0
i − Y 0

i |Ti = n,Ei = 1] Pr(Ti = n|Ei = 1)

which proves the result.

The previous theorem shows that Assumption 3.11 shuts down any direct effect of
receiving the encouragement on outcomes. As a consequence of this assumption,
the only impact that receiving the encouragement has on outcomes is through
participation into the program. Hence, ITE is equal to the impact of the program
on those who react to the encouragement: the compliers and the defiers, weighted
by their respective proportions.

The problem with the result of Theorem 3.10 is that ITE contains two-way flows
in and out of the program. If we want to know something about the effect of
the program, and not only about the effect of the encouragement, we need to
assume that defiers do not exist. That’s what Assumption 3.13 does, as the
following theorem shows:

Theorem 3.11 (From ITE to LATE). Under Assumptions 3.9, 3.11 and 3.13,
ITE is equal to the LATE multiplied by the proportion of compliers in the
population:

∆Y
ITE = ∆Y

LATE Pr(Ti = c|Ei = 1).
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Proof. The result is straighforward using Assumption 3.13 and Theorem 3.10.
Indeed, Assumption 3.13 implies that ∀i, D1

i −D0
i ≥ 0 (choosing only the first

“either” statement, without loss of generality). As a consequence, Pr(Ti = d|Ei =
1) = Pr(D1

i −D0
i = −1|Ei = 1) = 0.

In order to move from the link between LATE and ITE to the mechanics of
the Wald estimator, we need two additional identification results. The first
result shows that ITE can be identified under fairly light conditions by a WW
estimator. The second result shows that the proportion of people taking up the
treatment when eligiblity is announced is also easily estimated from the data.

Theorem 3.12 (Identification of ITE in an Encouragement Design). Under
Assumptions 3.9 and 3.10, ITE is identified by the With/Without comparison
among eligibles:

∆Y
ITE = ∆Y

WW |Ei=1.

Proof.

∆Y
WW |E=1 = E[Yi|Ri = 1, Ei = 1]− E[Yi|Ri = 0, Ei = 1]

= E[Y D
1
i ,1

i |Ri = 1, Ei = 1]− E[Y D
0
i ,0

i |Ri = 0, Ei = 1]

= E[Y D
1
i ,1

i |Ei = 1]− E[Y D
0
i ,0

i |Ei = 1],

where the second equality follows from Assumption 3.9 and the third from
Assumption 3.10.

Theorem 3.13 (Identification of the Proportion of Compliers). Under Assump-
tions 3.9, 3.10 and 3.13, the proportion of compliers is identified by the difference
between the proportion of people taking up the program among those receiving the
encouragement and the proportion of individuals taking up the program among
those not receiving the encouragement:

Pr(Ti = c|Ei = 1) = Pr(Di = 1|Ri = 1, Ei = 1)− Pr(Di = 1|Ri = 0, Ei = 1).
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Proof.

Pr(Di = 1|Ri = 1, Ei = 1) = Pr(Di = 1 ∩ (Ti = a ∪ Ti = c ∪ Ti = d ∪ Ti = n)|Ri = 1, Ei = 1)
= Pr(Di = 1 ∩ Ti = a|Ri = 1, Ei = 1)

+ Pr(Di = 1 ∩ Ti = c|Ri = 1, Ei = 1)
+ Pr(Di = 1 ∩ Ti = d|Ri = 1, Ei = 1)
+ Pr(Di = 1 ∩ Ti = n|Ri = 1, Ei = 1)

= Pr(Ti = a|Ri = 1, Ei = 1)
+ Pr(Ti = c|Ri = 1, Ei = 1)

= Pr(Ti = a|Ei = 1)
+ Pr(Ti = c|Ei = 1),

where the first equality follows the types being a partition of the sample space;
the second equality from the fact that the types are disjoint sets; the third
equality from the fact that Ti = a|Ri = 1⇒ Di = 1 (so that Pr(Di = 1 ∩ Ti =
a|Ri = 1, Ei = 1) = Pr(Ti = a|Ri = 1, Ei = 1)), Ti = c|Ri = 1 ⇒ Di = 1
(so that Pr(Di = 1 ∩ Ti = c|Ri = 1, Ei = 1) = Pr(Ti = c|Ri = 1, Ei = 1)),
Ti = d|Ri = 1⇒ Di = 0 (so that Pr(Di = 1 ∩ Ti = d|Ri = 1, Ei = 1) = 0) and
Ti = n|Ri = 1⇒ Di = 0 (so that Pr(Di = 1 ∩ Ti = n|Ri = 1, Ei = 1) = 0); and
the fourth equality from Assumption 3.10 and Lemma A.6.

Corollary 3.2 (Wald estimator and ITE). It follows from Theorems 3.12 and
3.13 that, under Assumptions 3.9, 3.10 and 3.13, the Wald estimator is equal to
the ITE divided by the propotion of compliers:

∆Y
Wald|E=1 = ∆Y

ITE

Pr(Ti = c|Ei = 1) .

As a consequence of Corollary 3.2, we see that the Wald estimator reweights
the ITE, the effect of receiving an encouragement, by the proportion of people
reacting to the encouragement by participating in the program, the compliers.
From Theorem 3.10, we know that this ratio will be equal to LATE if the
Assumption 3.11 also holds, so that all the impact of the encouragement stems
from entering the program. The encouragement serves as an instrument for
program participation.

Remark. The Encouragement design seems like magic. You do not assign
randomly the program, but only an encouragement to take it, and you can
recover the effect of the program anyway. The Encouragement design is less
intrusive than the Self-Selection and Eligibility designs. In an Encouragement
design, you do not have to refuse the program to agents in the control group.
You pay two types of prices for that:

1. You only recover LATE, not TT
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2. You have larger sampling noise.

The intuition for this second point can be delineated using the very same
apparatus that we have developed so far. So here goes. Under the assumptions
made so far, it is easy to show that (omitting the conditioning on Ei = 1 for
simplicity):

∆Y
WW |E=1 = E[Y 1,1

i |Ti = a,Ri = 1] Pr(Ti = a, |Ri = 1)

− E[Y 1,0
i |Ti = a,Ri = 0] Pr(Ti = a, |Ri = 0)

+ E[Y 1,1
i |Ti = c,Ri = 1] Pr(Ti = c|Ri = 1)

− E[Y 0,0
i |Ti = c,Ri = 0] Pr(Ti = c|Ri = 0)

+ E[Y 0,1
i |Ti = d,Ri = 1] Pr(Ti = d|Ri = 1)

− E[Y 1,0
i |Ti = d,Ri = 0] Pr(Ti = d|Ri = 0)

+ E[Y 0,1
i |Ti = n,Ri = 1] Pr(Ti = n|Ri = 1)

− E[Y 0,0
i |Ti = n,Ri = 0] Pr(Ti = n|Ri = 0).

The four parts of the equation account for comparisons among each type between
the two treatment arms. The parts due to always takers and never takers cancel
out under Assumptions 3.10 and 3.11. But this cancelling out only happens in
the population. In a given sample, the sample equivalents of the two members
of each difference do not have to be equal, and thus they do not cancel out,
generating sampling noise. Ideally, we would like to enforce that the effect of the
encouragement on always takers and never takers is null, as Assumption 3.11
imposes, but that would require observing the type variable Ti. Unfortunately,
we cannot now the type of each individual in the sample, since it is defined
counterfactually. Maybe someday we’ll be able to use prior responses to the
encouragement to identify the type of each individual and thus improve the
precision of the Wald estimator.

Explain de Chaisemartin.

Remark. what if we fear there are defiers. de Chaisemartin

Remark. In practice, we use a pseudo-RNG to allocate the randomized annouce-
ment of the encouragement:

R∗i ∼ U [0, 1]

Ri =
{

1 if R∗i ≤ .5 ∧ Ei = 1
0 if R∗i > .5 ∧ Ei = 1

Di = 1[ᾱ+ θµ̄+ ψRi − Ci ≥ 0 ∧ Ei = 1]
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ψ denotes the increase in agents’ valuation of the program after receiving the
encouragement.

Example 3.22. Let’s see how the encouragement design works in our numerical
example. Let’s choose a value for ψ and add it to the vector of parameters.
param <- c(param,0.6)
names(param) <- c("barmu","sigma2mu","sigma2U","barY","rho","theta","sigma2epsilon","sigma2eta","delta","baralpha","barc","gamma","sigma2V","psi")

Let’s first compute the value of LATE in this new model. Let’s denote D∗0i =
ᾱ+θµ̄−Ci the utility of agent i absent the encouragement, with Ci = c̄+γµi+Vi.
In order to be a complier, you have to have a utility of the program that is
insufficient to make you apply for the program when you receive no encouragement
(D∗0i < 0) and a positive utility of applying to the treatment after receiving the
encouragement (D∗0i + ψ ≥ 0). Compliers are thus such that −ψ ≤ D∗0i < 0.
LATE can thus be written as follows in our model:

∆y
LATE = ᾱ+ θE[µi|µi + UBi ≤ ȳ ∧ −ψ ≤ D∗0i < 0],

Using the same approach, we can also compute the proportion of compliers
among eligibles. In our model, we indeed have:

Pr(Ti = c|Ei = 1) = Pr(−ψ ≤ D∗0i < 0|µi + UBi ≤ ȳ).

Since all errors terms are normally distributed in our model, we can compute
the package tmvtnorm to compute both LATE and the proportion of compliers
among eligibles.

(µi, yBi , D∗0i ) ∼ N

µ̄, µ̄, ᾱ+ (θ − γ)µ̄− c̄,

 σ2
µ σ2

µ −γσ2
µ

σ2
µ σ2

µ + σ2
U −γσ2

µ

−γσ2
µ −γσ2

µ γ2σ2
µ + σ2

V


mean.mu.yB.Dstar <- c(param['barmu'],param['barmu'],param['baralpha']- param['barc']+(param['theta']-param['gamma'])*param['barmu'])
cov.mu.yB.Dstar <- matrix(c(param['sigma2mu'],param["sigma2mu"],-param['gamma']*param["sigma2mu"],

param["sigma2mu"],param['sigma2mu']+param['sigma2U'],-param['gamma']*param["sigma2mu"],
-param['gamma']*param["sigma2mu"],-param['gamma']*param["sigma2mu"],param["sigma2mu"]*(param['gamma'])ˆ2+param['sigma2V']),3,3,byrow=TRUE)

# late
lower.cut <- c(-Inf,-Inf,-param['psi'])
upper.cut <- c(Inf,log(param['barY']),0)
moments.cut <- mtmvnorm(mean=mean.mu.yB.Dstar,sigma=cov.mu.yB.Dstar,lower=lower.cut,upper=upper.cut)
delta.y.late <- param['baralpha']+ param['theta']*moments.cut$tmean[1]
# proportion of compliers
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lower.cut <- c(-Inf,-Inf,-Inf)
upper.cut <- c(Inf,log(param['barY']),Inf)
pr.compliers <- ptmvnorm.marginal(xn=0,n=3,mean=mean.mu.yB.Dstar,sigma=cov.mu.yB.Dstar,lower=lower.cut,upper=upper.cut)-ptmvnorm.marginal(xn=-param['psi'],n=3,mean=mean.mu.yB.Dstar,sigma=cov.mu.yB.Dstar,lower=lower.cut,upper=upper.cut)
delta.y.ite <- delta.y.late*pr.compliers

The value of ∆y
LATE in the population is thus 0.173. The proportion of compliers

among eligibles in the population is 0.272. As a consequence of Corollary 3.2,
we can compute ITE as the product of LATE and the proportion of compliers.
In our example, ITE is thus equal to 0.047 in the population.

Now let’s simulate a new sample with the encouragement delivered randomly
among eligibles. I’m also defining the potential outcomes D1

i and D0
i and the

types Ti for later use.
# I'm changing the seed because with the usual one, I get a negative estimate of the treatment effect: lots of sampling noise!
set.seed(12345)
N <-1000
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)

#random allocation of encouragement among eligibles
E <- ifelse(YB<=param["barY"],1,0)
Rs <- runif(N)
R <- ifelse(Rs<=.5 & E==1,1,0)
V <- rnorm(N,0,param["sigma2V"])
Dindex <- param["baralpha"]+param["theta"]*param["barmu"]+param["psi"]*R-param["barc"]-param["gamma"]*mu-V
Ds <- ifelse(Dindex>=0 & E==1,1,0)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)
D <- Ds

# types
Dindex1 <- param["baralpha"]+param["theta"]*param["barmu"]+param["psi"]-param["barc"]-param["gamma"]*mu-V
Dindex0 <- param["baralpha"]+param["theta"]*param["barmu"]-param["barc"]-param["gamma"]*mu-V
D1 <- ifelse(Dindex1>=0 & E==1,1,0)
D0 <- ifelse(Dindex0>=0 & E==1,1,0)
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AT <- ifelse(D1==1 & D0==1,1,0)
NT <- ifelse(D1==0 & D0==0,1,0)
Co <- ifelse(D1==1 & D0==0,1,0)

# figures
Ncompliers <- sum(Co)
NElig <- sum(E)
PrCoElig <- Ncompliers/NElig
LATEs <- mean(alpha[Co==1])
ITEs <- LATEs*PrCoElig

In our sample of N = 1000 individuals, there are only 216 eligibles, and among
them 67 compliers. The proportion of compliers among eligibles is thus 0.31.
Sample size decreases fast in an encouragement design. The sample LATE is
equal to 0.14. The sample ITE is equal to 0.044.

3.4.2 Estimating the Local Average Treatment Effect and
the Intention to Treat Effect

Classically, we present the results of an Encouragement design in three stages:

1. We show the first stage regression of Di on Ri: this estimates the impact
of the encouragement on participation into the program and estimates the
proportion of compliers.

2. We show the reduced form regression of Yi on Ri: this estimates the
impact of the encouragement on outcomes, also called ITE.

3. We finally show the structural regression of Yi on Di using Ri as an
instrument, which estimates the LATE.

3.4.2.1 First stage regression

The first stage regression is simply to get an estimate of the effect of the
encouragement on participation into the program. If there is no effect of the
encouragement on participation, we might as well stop there, since there will
be no compliers and no effect to estimate. Note that if we observe an effect on
the encouragement on outcomes without any effect on participation, we have
to accept the fact that the encouragement might have had a direct effect on
outcomes and thus that the exclusion restriction assumption does not hold.

Let’s denote this effect of Ri on Di ∆D,R
TT = E[D1

i −D0
i |Ri = 1, Ei = 1]. It is a

treatment on the treated since we want to estimate the effect of the cnouragement
onthose who have received it. Actually, ∆D,R

TT is also equal to ∆D,R
ATE , since those

who have received the encouragement are a random sample of the eligibles.

How to estimate the effect of Ri on Di? When estimating the effect of the
encouragement, we are in a Brute Force design among eligibles, so that the
appropriate estimator is the With/Without estimator among eligibles:
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Theorem 3.14 (Identification of the First Stage Effect in an Encouragment
Design). Under Assumptions 3.9 and 3.10, the WW estimator identifies the
First Stage Effect (the effect of Ri on Di):

∆D,R
WW = ∆D,R

TT .

Proof. This is a direct consequence of Theorem 3.1.

As we have seen in Chapter 1, the WW estimator is identical to an OLS estimator:
The OLS coefficient β in the following regression:

Di = α+ βRi + Ui

is thus the WW estimator.

Finally, the advantage of using OLS other the direct WW comparison is that it
gives you a direct estimate of sampling noise (see next section) but also that it
enables you to condition on additional covariates in the regression: The OLS
coefficient β in the following regression:

Di = α+ βRi + γ′Xi + Ui

is a consistent (and even unbiased) estimate of the ATE.

Center covariates at mean?

Example 3.23. In our numerical example, we can compare all these estimators.
WW.D.R <- mean(D[E==1 & R==1])-mean(D[E==1 & R==0])
reg.D.R.ols <- lm(D[E==1]~R[E==1])
reg.D.R.ols.yB <- lm(D[E==1]~R[E==1]+yB[E==1])

∆̂D,R
WW = 0.213, while ∆̂D,R

OLS = 0.213 which is exactly equal, as expected, to the
WW estimator. When controlling for yBi , we have: ∆̂D,R

OLS(yB) = 0.233.

Under monotonicity, ∆D,R
TT is equal to the proportion of compliers among eligibles.

Indeed, this is the proportion of eligibles that participate when receiving the
encouragement and that does not participate when not receiving it. In our
example, the proportion of compliers among eligibles is 0.272 in the population
and 0.31 in the sample. We are thus underestimating the true proportino of
compliers, which is going to make us overestimate the LATE.

3.4.2.2 Reduced form regression

The reduced form regression aims at estimating the ITE, that is the impact
of receiving the encouragement on outcomes. From Theorem 3.12, we know
that the WW estimator among eligibles identifies the ITE in the population.
As a consequence of now classical results, the OLS estimator without control
variables is equivalent to the WW estimator and the OLS estimator conditioning
on covariates might increase precision.
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Example 3.24. In our numerical example, we can compare all these estimators.
WW.y.R <- mean(y[E==1 & R==1])-mean(y[E==1 & R==0])
reg.y.R.ols <- lm(y[E==1]~R[E==1])
reg.y.R.ols.yB <- lm(y[E==1]~R[E==1]+yB[E==1])

∆̂y,R
WW = 0.179, while ∆̂y,R

OLS = 0.179 which is exactly equal, as expected, to the
WW estimator. When controlling for yBi , we have: ∆̂y,R

OLS(yB) = 0.108. In our
example, the ITE is 0.047 in the population and 0.044 in the sample. Without
conditioning on Y Bi , we are thus overestimating the true ITE by a lot. The
consequence is that we are going to overestimate the LATE as well.

3.4.2.3 Structural regression

There are four ways to compute the LATE:

1. We can directly compute the sample equivalent to the Wald estimator
defined in Theorem 3.9.

2. We can divide our estimate of the ITE by the proportion of compliers, as
Corollary 3.2 suggests.

3. We can run a regression of Y on D using R as an instrumental variable.
4. We can run a regression of Y on D using R as an instrumental variable

and controlling for some variables X.

It turns out that, in the absence of control variables, the first three estimators are
fully equivalent. Corollary 3.2 has already shown that the first two approaches
are equivalent in the population. Theorem 3.15 below shows that the Wald
estimator is equivalent to an IV estimator.

For simplicity, in all that follows, I am working only in the subgroup of eligible
individuals. That means that I’m setting Ei = 1 for everyone, so that N is the
number of eligible individuals.

3.4.2.3.1 Using the Wald estimator The empirical counterpart to the
Wald estimator is the difference in mean outcomes between treatment and
controls divided by the difference in participation rates between the two groups:

∆̂Y
Wald =

1∑N

i=1
Ri

∑N
i=1 YiRi −

1∑N

i=1
(1−Ri)

∑N
i=1 Yi(1−Ri)

1∑N

i=1
Ri

∑N
i=1DiRi − 1∑N

i=1
(1−Ri)

∑N
i=1Di(1−Ri)

Example 3.25. Let’s check how this works in our numerical example.
mean.y.R.1 <- mean(y[E==1 & R==1])
mean.y.R.0 <- mean(y[E==1 & R==0])
mean.D.R.1 <- mean(D[E==1 & R==1])
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mean.D.R.0 <- mean(D[E==1 & R==0])
delta.y.Wald <- (mean.y.R.1-mean.y.R.0)/(mean.D.R.1-mean.D.R.0)

The numerator of the Wald estimator is equal to 7.059 − 6.88 = 0.179. The
denominator of the Wald estimator is equal to 0.704 − 0.491 = 0.213. Overall,
the Wald estimator of the LATE is equal to 0.179 ÷ 0.213 = 0.841.

Remember that the true LATE is equal to 0.173. We are thus severely overesti-
mating the LATE. We’ll understand why in the next section.

3.4.2.3.2 Using the ITE We know from Corollary 3.2 that dividing the
ITE by the proportion of compliers gives the Wald estimator. From Theorem
3.12, we know that the ITE can be estimated using the sample equivalent to the
With/Without estimator as follows:

∆̂Y,R
WW = 1∑N

i=1Ri

N∑
i=1

YiRi −
1∑N

i=1(1−Ri)

N∑
i=1

Yi(1−Ri).

From Theorem 3.13, we also know that the proportion of compliers can be
estimated using the sample equivalent to the With/Without estimator as follows:

∆̂D,R
WW = 1∑N

i=1Ri

N∑
i=1

DiRi −
1∑N

i=1(1−Ri)

N∑
i=1

Di(1−Ri).

Example 3.26. Let’s check that this unfolds in our numerical example.

We already know that the estimated ITE is equal to 0.179, which is equal to the
numerator of the Wald estimator. We also now that the proportion of compliers
in our sample is equal to 0.213. As a consequence, again, the Wald estimator
of the LATE is equal to 0.179 ÷ 0.213 = 0.841. Without surprise, we obtain
exactly the same results as when using the Wald estimator directly. The two
approaches are numerically equivalent.

Again, our estimator of the LATE, the Wald estimator, severelt overestimates
the LATE. The Wald estimator is equal to 0.841 while the true LATE is equal
to 0.173. What is the reason for this mistake? There are actually two:

1. We are overestimating the ITE (truth: 0.047; estimate: 0.179).
2. We are underestimating the proportion of compliers (truth: 0.272; estimate:

0.213).

The combination of these two mistakes generates the large discrepancy that we
see between our estimate of the LATE and its true value. This error comes
for covariates that are not distributed identically in the treatment and control
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groups. Maybe controlling for some of them would improve our fit. In order to
to that, we need the IV estimator.

3.4.2.3.3 Using the IV estimator A very useful result is that the Wald
estimator can be computed as an IV estimator. The following theorem proves
that point:

Theorem 3.15 (Wald is IV). Under the assumption that there is at least one
individual with Ri = 1 and Di = 1, the coefficient β in the following regression
estimated using Ri as an IV:

Yi = α+ βDi + Ui

is the Wald estimator:

β̂IV =
1
N

∑N
i=1

(
Yi − 1

N

∑N
i=1 Yi

)(
Ri − 1

N

∑N
i=1Ri

)
1
N

∑N
i=1

(
Di − 1

N

∑N
i=1Di

)(
Ri − 1

N

∑N
i=1Ri

)
=

1∑N

i=1
Ri

∑N
i=1 YiRi −

1∑N

i=1
(1−Ri)

∑N
i=1 Yi(1−Ri)

1∑N

i=1
Ri

∑N
i=1DiRi − 1∑N

i=1
(1−Ri)

∑N
i=1Di(1−Ri)

= ∆̂Y
Wald

Proof. See in section A.2.2 in the appendix.

Theorem 3.15 is super powerful since it enables us to directly use the IV estimator
to compute the Wald estimator. In order to do so, we’re going to use the estimator
ivreg in the AER package.

Example 3.27. Let’s see how the IV estimator performs in our numerical
example.
reg.y.R.2sls.encourage <- ivreg(y[E==1]~Ds[E==1]|R[E==1])
beta.IV <- reg.y.R.2sls.encourage$coef[2]

β̂IV = 0.841, which is equal to the Wald estimator, as Theorem 3.15 predicted.

3.4.2.3.4 Using the IV estimator conditioning on covariates One nice
thing about the IV estimator is that we can use it to control for additional
covariates X. Estimating the following equation with Ri and Xi as instruments:

Yi = α+ βDi + γ′Xi + Ui
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recovers βIV (X), which is an estimate of the LATE under linearity assumptions
on the potential outcomes.

Expand on that Center covariates at mean?

Example 3.28. Let’s see how this work in our numerical example, when we
condition on yBi .
reg.y.R.yB.2sls.encourage <- ivreg(y[E==1] ~ Ds[E==1] + yB[E==1] | R[E==1] + yB[E==1])
beta.IV.yB <- reg.y.R.yB.2sls.encourage$coef[2]

β̂IV (yB) = 0.464. Remember that the value of ∆y
LATE in the population is

thus 0.173. All of our estimators have overshoot. The worse are the ones not
conditioning on yB. It seems that conditioning on yB improves the estimator
slightly. So part of the estimation error in the Wald estimator probably comes
from an imbalance in yBi between the treatment and control groups. Let’s check
that this is the case.
reg.yB.R.ols.encourage <- lm(yB[E==1] ~ R[E==1])
delta.yB.WW.R <- reg.yB.R.ols.encourage$coef[2]

The difference in yBi among treated and controls in our example is 0.075. This
is enough to account for the bias on the ITE.

Expand on that

Remark. One key question that remains is that whether the structural parameter
β(X) is still equal to the ratio of the reduced form parameter and the first stage
parameter obtained by running OLS conditionnal on X.

Example 3.29. Let’s examine what happens in our example.
reg.y.R.yB.ols.encourage <- lm(y[E==1] ~ R[E==1] + yB[E==1])
ITE.yB <- reg.y.R.yB.ols.encourage$coef[2]

reg.D.R.yB.ols.encourage <- lm(D[E==1] ~ R[E==1] + yB[E==1])
prCo.yB <- reg.D.R.yB.ols.encourage$coef[2]

Wald.yB <- ITE.yB/prCo.yB

We find that the ITE conditional on yBi is equal to 0.108 while the proportion of
compliers conditioning on yBi is equal to 0.233. Overall the ratio of these two,
which we could call the Wald ratio after conditioning on yBi is equal to 0.464.
This is actually equal to the IV estimator including yBi as a covariate: β̂IV (yB) =
0.464. So running the reduced form and first stage regressions separately and
dividing the coefficients on Ri recovers the LATE even when conditioning on
covariates? That’s pretty neat and opens up the route for a variety of new
estimation techniques called split sample estimators, developed by Angrist
and Krueger. We’ll take more about them later.

http://economics.mit.edu/files/398
http://economics.mit.edu/files/398
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Remark. We might want to control nonparametrically on the covariates instead
of imposing a linear regression. Frolich’s Wald matching estimator enables to do
just that. Its implementation will become clearer after Chapter 5.

Remark. The last thing we want to check is whether conditioning on covariates
improve precision. It seems to be the case in our example with one dataset.
Let’s see what happens over sampling repetitions.

Example 3.30. Let’s run some Monte Carlo simulations for the sampling noise
of IV with and without conditining on yBi .
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Figure 3.7: Distribution of the Wald and Wald(X) estimator in an encourage-
ment design over replications of samples of different sizes

Comment on the results

3.4.3 Estimating sampling noise
As always, we can estimate sampling noise either using the CLT or resampling
methods. Using the CLT, we can derive the following formula for the distribution
of the Bloom estimator: Theorem 3.16 shows the asymptotic distribution of
∆̂Y
Wald:

Theorem 3.16 (Asymptotic Distribution of ∆̂Y
Wald). Under Assumptions 3.9,

3.10, 3.11, 3.12, we have:

√
N(∆̂Y

Wald −∆Y
LATE) d→ N

(
0, 1

(pD1 − pD0 )2

[(
pD

pR

)2 V[Yi|Ri = 0]
1− pR +

(
1− pD

1− pR

)2 V[Yi|Ri = 1]
pR

])

Adding Assumption 3.13, the variance of the Wald estimator can be further
decomposed as follows:

https://www.sciencedirect.com/science/article/abs/pii/S0304407606001023
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σ2
∆̂Y
Wald

=
(
pD

pR

)2 V[Y 0
i |Ti = C]

pC(1− pR) +
(

1− pD

1− pR

)2 V[Y 1
i |Ti = C]
pCpR

+ (pAT (1− pR)− pNT pR)2 + pR(1− pR)
(pCpR(1− pR))2

[
pATV[Y 1

i |Ti = AT ] + pNTV[Y 0
i |Ti = NT ]

]
with pD = Pr(Di = 1), pR = Pr(Ri = 1), pD1 = Pr(Di = 1|Ri = 1), pD0 =
Pr(Di = 1|Ri = 0), pt = Pr(Ti = t), with t ∈ {AT,NT,C,D}.

Proof. See Section A.2.3.

Remark. Theorem 3.16 shows that the effective sample size of an encouragement
design is equal to the number of compliers. Indeed, the denominator of the
variance of the Wald Estimatior depends on pD1 − pD0 , which is an estimate of
the proportion of compliers, under Assumption 3.13.

Theorem 3.16 also shows that there is a price to pay for the fact that we cannot
enforce the effect on always takers and never takers is actually zero. Indeed,
as the second formula shows, it is not only the variance of the oucomes of the
compliers that appears in the formula, but also the variances of the outcomes of
the always takers and never takers, therefore increasing sampling noise.

Remark. In order to compute the formula in Theorem 3.16, we can use a plug-in
estimator or the IV standard error estimate robist to heteroskedasticity. Here is
a simple function in order to compute the plug-in estimator:

Example 3.31. Let us derive the CLT-based estimates of sampling noise using
both the plug-in estimator and the IV standard errors without conditioning on
covariates first. For the sake of the example, I’m working with a sample of size
N = 1000.
sn.Encourag.simuls <- 2*quantile(abs(simuls.encourage[['1000']][,'Wald']-delta.y.late),probs=c(0.99))
sn.Encourag.IV.plugin <- 2*qnorm((.99+1)/2)*sqrt(var.Encourage.plugin(pD1=mean(D[E==1 & R==1]),pD0=mean(D[E==1 & R==0]),pD=mean(D[E==1]),pR=mean(R[E==1]),V0=var(y[R==0 & E==1]),V1=var(y[R==1 & E==1]),N=length(y[E==1])))
sn.Encourag.IV.homo <- 2*qnorm((.99+1)/2)*sqrt(vcov(reg.y.R.2sls.encourage)[2,2])
sn.Encourag.IV.hetero <- 2*qnorm((.99+1)/2)*sqrt(vcovHC(reg.y.R.2sls.encourage,type='HC2')[2,2])

True 99% sampling noise (from the simulations) is 1.166. 99% sampling noise
estimated using the plug-in estimator is 2.124. 99% sampling noise estimated
using default IV standard errors is 23.134. 99% sampling noise estimated using
heteroskedasticity robust IV standard errors is 2.119.

Conditioning on yBi :
sn.Encourag.simuls.yB <- 2*quantile(abs(simuls.encourage.yB[['1000']][,'Wald']-delta.y.late),probs=c(0.99))
sn.Encourag.IV.homo.yB <- 2*qnorm((.99+1)/2)*sqrt(vcov(reg.y.R.yB.2sls.encourage)[2,2])
sn.Encourag.IV.hetero.yB <- 2*qnorm((.99+1)/2)*sqrt(vcovHC(reg.y.R.yB.2sls.encourage,type='HC2')[2,2])
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True 99% sampling noise (from the simulations) is 0.705. 99% sampling noise
estimated using default IV standard errors is 0.988. 99% sampling noise estimated
using heteroskedasticity robust IV standard errors is 0.975.
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Chapter 4

Natural Experiments

Natural Experiments are situations due to the natural course of events that
approximate the conditions of a randomized controlled trial. In the economists’
toolkit, we generally make a distinction between:

1. Instrumental variables (IV), that rely on finding a plausibly exogeneous
source of variation in treatment intake.

2. Regression Discontinuity Designs (RDD), that exploit a discontinuity in
the eligibility to the treatment.

3. Difference In Differences (DID), that make use of the differential exposure
of some groups to the treatment of interest over time.

Remark. The term Natural Experiments seems to be mostly used by economists.
It dates back to Haavelmo (1944)’s paper on the Probability Approach to
Econometrics, where he makes a distinction between the experiments we’d like
to make as social scientists and the experiments that Nature provides us with,
that are in general a subset of the experiments we’d like to make. This raises the
question of our ability to identify the relationships of interest from the variation
that is present in the data, a traditional problem in classical econometrics that
has echoes in treatment effect estimation, where we also try to identify treatment
effect parameters. At the time of Haavelmo, and until the beginning of the 1990s,
there was no real discussion of the plausibility of the identifying assumptions (or
restrictions) required for identification of certain relations, outside of a discussion
of their theoretical plausiblility. With the credibility revolution brought about by
Angrist (1990)’s paper and summarized in Angrist and Krueger (2001)’s review
paper, the notion of natural experiment made a come back, with the idea that
we might be able to look for specific set of events produced by Nature that more
credibly identify a relationship of interest, i.e. that closely approximate true
experimental conditions.

Remark. Outside of economics, Natural Experiments have also flourished, but
without the term, and were compiled in the early textbook on research methods
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by Campbell (1966). Both Difference In Differences and Regression Discontinuity
Designs have been actually developed outside of economics, mostly in education
research. Instrumental Variables have had a separate history in economics and
in genetics, were it is called the method of path coefficients.

4.1 Instrumental Variables
Instrumental Variables rely on finding a plausibly exogeneous source of variation
in treatment intake. In the simple case of a binary instrument, the identifica-
tion and estimation parts are actually identical to Encouragements designs in
RCTs, that we have already studied in Section 3.4. As a consequence, unless
we make very strong assumptions, an IV design is going to recover a Local
Average Treatment Effect. Our classical assumptions are going to show up again:
Independence, Exclusion Restriction, Monotonicity.

Remark. Examples of Instrumental Variables are:

• Distance to college or to school for studying the impact of college or school
enrollement on education, earnings and other outcomes.

• Random draft lottery number for investigating the impact of military
experience on earnings and other outcomes.

• Randomized encouragement to participate in order to study the impact of
a program.

Remark. The crucial part of an IV design is to justify the credibility of the
exclusion restriction and independence assumptions. It is in general very difficult
to justify these assumptions, especially the exclusion restriction assumption. In
the examples above, one could argue that schools or colleges might be built
where they are necessary, i.e. close to destitute populations, or, on the contrary,
that they are built far from difficult neighbourhoods. As soon as distance to
school becomes correlated with other determinants of schooling, such as parental
income and education, the independence assumption is violated.

Even if school placement is truly independent of potential education and earnings
outcomes at first, parents, by choosing where to live, will sort themselves such as
the parents that pay more attention to education end up located closer to school.
As a consequence, the independence assumption might be violated again.

Even when the instrument is truly random, such as a draft lottery number,
and thus the independence assumption seems fine, the instrument may directly
affect the outcomes by other ways than the treatment of interest. For example,
receiving a low draft lottery number makes one more likely to be drafted. In
response, one might decide to increase their length of stay in college in order to
use the waiver for the draft reserved for students. If receiving a low draft lottery
number increases the number of years of education, and in turn subsequent
earnings, then the exclusion restriction assumption is violated.

In this section, I’m going to denote Zi a binary instrument that can either take
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value 0 or 1. In general, we try to reserve the value 1 for the instrument value
that increases participation in the treatment of interest. In our examples, that
would be when for example, the distance to college is low, the draft lottery
number is low, or someone receives an encouragement to enter a program.

4.1.1 An example where Monotonicity does not hold
Since Monotonicity is going to play such a particular role, and since we have
already explored this assumption a little in Chapter 3, I am going to use as
an example a model where the Monotonicity assumption actually does not
hold. It will, I hope, help us understand better the way Monotonicity works
and how it interacts with the other assumptions. The key component of the
model that makes Monotonicity necessary is the fact that treatment effects are
heterogeneous and correlated with participation in the treatment. We’ll see later
that Monotonicity is unnecessary when treatment effects are orthogonal to take
up.

Example 4.1. Let’s see how we can generate a model without Monotonicity:

y1
i = y0

i + ᾱ+ θµi + ηi

y0
i = µi + δ + U0

i

U0
i = ρUBi + εi

yBi = µi + UBi

UBi ∼ N (0, σ2
U )

Di = 1[yBi + κiZi + Vi ≤ ȳ]

κi =
{
−κ̄ if ξi = 1
κ if ξi = 0

ξ ∼ B(pξ)
Vi = γ(µi − µ̄) + ωi

(ηi, ωi) ∼ N (0, 0, σ2
η, σ

2
ω, ρη,ω)

Zi ∼ B(pZ)
Zi ⊥⊥ (y0

i , y
1
i , y

B
i , Vi)

ξi ⊥⊥ (y0
i , y

1
i , y

B
i , Vi, Zi)

The key component of the model that generates a failure of Monotonicity is the
coefficient κi, that determines how individuals’ participation into the program
reacts to the instrument Zi. κi is a coefficient whose value varies accross the
population. In my simplified model, κi can take only two values, −κ̄ or κ. When
−κ̄ and κ have opposite signs (let’s say −κ̄ < 0 and κ > 0), then individuals
with κi = −κ̄ are going to be more likely to enter the program when they receive
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an encouragement (when Zi = 1) while individuals with κi = κ will be less likely
to enter the program when Zi = 1. When −κ̄ and κ have different signs, we
have four types of reactions when the instrumental variable moves from Zi = 0
to Zi = 1, holding everything else constant. These four types of reactions define
four types of individuals:

• Always takers (Ti = a): individuals that participate in the program both
when Zi = 0 and Zi = 1.

• Never takers (Ti = n): individuals that do not participate in the program
both when Zi = 0 and Zi = 1.

• Compliers (Ti = c): individuals that do not participate in the program
when Zi = 0 but that participate in the program when Zi = 1 .

• Defiers (Ti = d): individuals that participate in the program when Zi = 0
but that do not participate in the program when Zi = 1 .

In our model, these four types are a function of yBi + Vi and κi. In order to see
this let’s define, as in Section 3.4, Dz

i the participation decision of individual
i when the instrument is exogenously set to Zi = z, with z ∈ {0, 1}. When
κi = −κ̄ < 0, we have three types of reactions to the instrument. It turns out
that each of type can be defined by where yBi + Vi lies with respect to a series of
thresholds:

• Always takers (Ti = a) are such that D1
i = 1[yBi − κ̄+ Vi ≤ ȳ] = 1 and

D0
i = 1[yBi + Vi ≤ ȳ] = 1, so that they actually are such that: yBi + Vi ≤ ȳ.

This is because yBi + Vi ≤ ȳ ⇒ yBi + Vi ≤ ȳ + κ̄, when κ̄ > 0.
• Never takers (Ti = n) are such that D1

i = 1[yBi − κ̄ + Vi ≤ ȳ] = 0
and D0

i = 1[yBi + Vi ≤ ȳ] = 0, so that they actually are such that:
yBi + Vi > ȳ + κ̄. This is because yBi + Vi > ȳ + κ̄⇒ yBi + Vi > ȳ, when
κ̄ > 0.

• Compliers (Ti = c) are such that D1
i = 1[yBi − κ̄+Vi ≤ ȳ] = 1 and D0

i =
1[yBi +Vi ≤ ȳ] = 0, so that they actually are such that: ȳ < yBi +Vi ≤ ȳ+κ̄.

When κi = κ > 0, we have three types defined by where Vi lies with respect to a
series of thresholds:

• Always takers (Ti = a) are such that D1
i = 1[yBi + κ + Vi ≤ ȳ] = 1

and D0
i = 1[yBi + Vi ≤ ȳ] = 1, so that they actually are such that:

yBi + Vi ≤ ȳ − κ. This is because yBi + Vi ≤ ȳ − κ ⇒ yBi + Vi ≤ ȳ, when
κ > 0.

• Never takers (Ti = n) are such that D1
i = 1[yBi − κ̄+ Vi ≤ ȳ] = 0 and

D0
i = 1[yBi + Vi ≤ ȳ] = 0, so that they actually are such that: yBi + Vi > ȳ.

This is because yBi + Vi > ȳ ⇒ yBi + Vi ≤ ȳ − κ, when κ > 0.
• Defiers (Ti = d) are such that D1

i = 1[yBi + κ + Vi ≤ ȳ] = 0 and D0
i =

1[yBi +Vi ≤ ȳ] = 1, so that they actually are such that: ȳ−κ < Vi+yBi ≤ ȳ.

Let’s visualize how this works in a plot. Before that, let’s generate some data
according to this process. For that, let’s choose values for the new parameters.
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param <- c(8,.5,.28,1500,0.9,0.01,0.05,0.05,0.05,0.1,0.1,7.98,0.5,1,0.5,0.9,0.28,0)
names(param) <- c("barmu","sigma2mu","sigma2U","barY","rho","theta","sigma2epsilon","sigma2eta","delta","baralpha","gamma","baryB","pZ","barkappa","underbarkappa","pxi","sigma2omega","rhoetaomega")

set.seed(1234)
N <-1000
cov.eta.omega <- matrix(c(param["sigma2eta"],param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["sigma2omega"]),ncol=2,nrow=2)
eta.omega <- as.data.frame(mvrnorm(N,c(0,0),cov.eta.omega))
colnames(eta.omega) <- c('eta','omega')
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
Z <- rbinom(N,1,param["pZ"])
xi <- rbinom(N,1,param["pxi"])
kappa <- ifelse(xi==1,-param["barkappa"],param["underbarkappa"])
V <- param["gamma"]*(mu-param["barmu"])+eta.omega$omega
Ds[yB+kappa*Z+V<=log(param["barY"])] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta.omega$eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)

We can now define the types variable Ti:
D1 <- ifelse(yB+kappa+V<=log(param["barY"]),1,0)
D0 <- ifelse(yB+V<=log(param["barY"]),1,0)
AT <- ifelse(D1==1 & D0==1,1,0)
NT <- ifelse(D1==0 & D0==0,1,0)
C <- ifelse(D1==1 & D0==0,1,0)
D <- ifelse(D1==0 & D0==1,1,0)
Type <- ifelse(AT==1,'a',

ifelse(NT==1,'n',
ifelse(C==1,'c',

ifelse(D==1,'d',""))))

data.non.mono <- data.frame(cbind(Type,C,NT,AT,D1,D0,Y,y,Y1,Y0,y0,y1,yB,alpha,U0,eta.omega$eta,epsilon,Ds,kappa,xi,Z,mu,UB))

#ggplot(data.non.mono, aes(x=V, y=yB),color(as.factor(Type))) +
# geom_point(shape=1)+
# facet_grid(.~ as.factor(kappa))
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plot(yB[AT==1 & kappa==-param["barkappa"]]+V[AT==1 & kappa==-param["barkappa"]],y[AT==1 & kappa==-param["barkappa"]],pch=1,xlim=c(5,11),ylim=c(5,11),xlab='yB+V',ylab="Outcomes")
points(yB[NT==1 & kappa==-param["barkappa"]]+V[NT==1 & kappa==-param["barkappa"]],y[NT==1 & kappa==-param["barkappa"]],pch=1,col='blue')
points(yB[C==1 & kappa==-param["barkappa"]]+V[C==1 & kappa==-param["barkappa"]],y[C==1 & kappa==-param["barkappa"]],pch=1,col='red')
points(yB[D==1 & kappa==-param["barkappa"]]+V[D==1 & kappa==-param["barkappa"]],y[D==1 & kappa==-param["barkappa"]],pch=1,col='green')
abline(v=log(param["barY"]),col='red')
abline(v=log(param["barY"])+param['barkappa'],col='red')
#abline(v=log(param["barY"])-param['underbarkappa'],col='red')
text(x=c(log(param["barY"]),log(param["barY"])+param['barkappa']),y=c(5,5),labels=c(expression(bar('y')),expression(bar('y')+bar(kappa))),pos=c(2,4),col=c('red','red'),lty=c('solid','solid'))
legend(5,10.5,c('AT','NT','C','D'),pch=c(1,1,1,1),col=c('black','blue','red','green'),ncol=1)
title(expression(kappa=bar(kappa)))

plot(yB[AT==1 & kappa==param["underbarkappa"]]+V[AT==1 & kappa==param["underbarkappa"]],y[AT==1 & kappa==param["underbarkappa"]],pch=1,xlim=c(5,11),ylim=c(5,11),xlab='yB+V',ylab="Outcomes")
points(yB[NT==1 & kappa==param["underbarkappa"]]+V[NT==1 & kappa==param["underbarkappa"]],y[NT==1 & kappa==param["underbarkappa"]],pch=1,col='blue')
points(yB[C==1 & kappa==param["underbarkappa"]]+V[C==1 & kappa==param["underbarkappa"]],y[C==1 & kappa==param["underbarkappa"]],pch=1,col='red')
points(yB[D==1 & kappa==param["underbarkappa"]]+V[D==1 & kappa==param["underbarkappa"]],y[D==1 & kappa==param["underbarkappa"]],pch=1,col='green')
abline(v=log(param["barY"]),col='red')
#abline(v=log(param["barY"])-param['barkappa'],col='red')
abline(v=log(param["barY"])-param['underbarkappa'],col='red')
text(x=c(log(param["barY"]),log(param["barY"])-param['underbarkappa']),y=c(5,5),labels=c(expression(bar('y')),expression(bar('y')-underbar(kappa))),pos=c(2,2),col=c('red','red'),lty=c('solid','solid'))
legend(5,10.5,c('AT','NT','C','D'),pch=c(1,1,1,1),col=c('black','blue','red','green'),ncol=1)
title(expression(kappa=underbar(kappa)))
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Figure 4.1: Types

As Figure 4.1 shows how the different types interact with κi. When κi = −κ̄,
individuals with yBi + Vi below ȳ always take the program. Even when Zi = 1
and κ̄ is subtracted from their index, it is still low enough so that they get to
participate. When yBi + Vi is in between ȳ and ȳ + κ̄, the individuals are such
that their index without subtracting κ̄ is above ȳ, but it is below ȳ when κ̄
is subtracted from it. These individuals participate when Zi = 1 and do not
participate when Zi = 0: they are compliers. Individuals such that yBi + Vi is
above ȳ + κ̄ will have an index above ȳ whether we substract κ̄ from it or not.
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They are never takers.

When κi = κ, individuals with yBi + Vi below ȳ − κ always take the program.
Even when Zi = 0 and κ is not subtracted from their index, it is still low enough
so that they get to participate. When yBi + Vi is in between ȳ − κ and ȳ, the
individuals are such that their index without adding κ is below ȳ, but it is above
ȳ when κ is added to it. These individuals participate when Zi = 0 and do not
participate when Zi = 1: they are defiers. Individuals such that yBi +Vi is above
ȳ will have an index above ȳ whether we add κ from it or not. They are never
takers.

4.1.2 Identification

We need several assumptions for identification in an Instrumental Variable
framework. We are going to explore two sets of assumption that secure the
identification of two different parameters:

• The Average Treatment Effect on the Treated (TT ): identification will
happen through the assumption of independence of treatment effects from
potential treatment choice

• The Local Average Treatment Effect (LATE)

Hypothesis 4.1 (First Stage Full Rank). We assume that the instrument Zi
has a direct effect on treatment participation:

Pr(Di = 1|Zi = 1) 6= Pr(Di = 1|Zi = 0).

Example 4.2. Let’s see how this assumption works in our example. Let’s first
compute the average values of Yi and Di as a function of Zi, for later use.
means.IV <- c(mean(Ds[Z==0]),mean(Ds[Z==1]),mean(y0[Z==0]),mean(y0[Z==1]),mean(y[Z==0]),mean(y[Z==1]),0,1)
means.IV <- matrix(means.IV,nrow=2,ncol=4,byrow=FALSE,dimnames=list(c('Z=0','Z=1'),c('D','y0','y','Z')))
means.IV <- as.data.frame(means.IV)

Figure 4.2 shows that the proportion of treated when Zi = 1 in our sample is
equal to 0.53 while the proportion of treated when Zi = 0 is equal to 0.28, in
accordance with Assumption 4.1. In the population, the proportion of treated
when Zi = 1 depends on the value of κi. Let’s derive its value:
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Figure 4.2: Proportion of participants as a function of Zi

Pr(Di = 1|Zi = 1) = Pr(yBi + κiZi + Vi ≤ ȳ|Zi = 1)
= Pr(yBi + κi + Vi ≤ ȳ)
= Pr(yBi + Vi ≤ ȳ + κ̄|ξi = 1) Pr(ξi = 1) + Pr(yBi + Vi ≤ ȳ − κ|ξi = 0) Pr(ξi = 0)
= Pr(yBi + Vi ≤ ȳ + κ̄)pξ + Pr(yBi + Vi ≤ ȳ − κ)(1− pξ)

= pξΦ

 ȳ + κ̄− µ̄√
(1 + γ2)σ2

µ + σ2
U + σ2

ω

+ (1− pξ)Φ

 ȳ − κ− µ̄√
(1 + γ2)σ2

µ + σ2
U + σ2

ω


where the second equality follows from Zi being independent of (y0

i , y
1
i , y

B
i , Vi),

the third equality follows from ξi being independent from (y0
i , y

1
i , y

B
i , Vi, Zi)

and the last equality follows from the formula for the cumulative of a normal
distribution. The formula for Pr(Di = 1|Zi = 0) is the same except for κ̄ and κ
that are set to zero.

Let’s write two functions to compute these probabilities:
prob.D.Z.1 <- function(param){
part.1 <- param['pxi']*pnorm((log(param["barY"])+param['barkappa']-param['barmu'])/sqrt((1+param['gamma']ˆ2)*param['sigma2mu']+param["sigma2U"]+param['sigma2omega']))
part.2 <- (1-param['pxi'])*pnorm((log(param["barY"])-param['underbarkappa']-param['barmu'])/sqrt((1+param['gamma']ˆ2)*param['sigma2mu']+param["sigma2U"]+param['sigma2omega']))
return(part.1+part.2)

}
prob.D.Z.0 <- function(param){
part.1 <- param['pxi']*pnorm((log(param["barY"])-param['barmu'])/sqrt((1+param['gamma']ˆ2)*param['sigma2mu']+param["sigma2U"]+param['sigma2omega']))
part.2 <- (1-param['pxi'])*pnorm((log(param["barY"])-param['barmu'])/sqrt((1+param['gamma']ˆ2)*param['sigma2mu']+param["sigma2U"]+param['sigma2omega']))
return(part.1+part.2)

}

With these functions, we know that, in the population, Pr(Di = 1|Zi = 1) =
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0.57 and Pr(Di = 1|Zi = 0) = 0.25, which is not far from what we have found in
our sample.

Our next set of assumptions imposes that the instrument has no direct effect on
the outcome and that it is not correlated with all the potential outcomes. Let’s
start with the exclusion restriction:

Hypothesis 4.2 (Exclusion Restriction). We assume that there is no direct
effect of Zi on outcomes:

∀d, z ∈ {0, 1} , Y d,zi = Y di .

Example 4.3. In our example, this assumption is automatically satisfied.

Indeed, yd,zi = y0
i +d(y1

i −y0
i ) which is parameterized as yd,zi = µi+δ+U0

i +d(ᾱ+
θµi+ηi). Since yd,zi does not depend on z, we have yd,zi = ydi , ∀d, z ∈ {0, 1}. The
assumption would not be satisfied if Zi entered the equations for y0

i or y1
i . For

example, if Zi is the Vietnam draft lottery number (high or low) used by Angrist
to study the impact of army experience on earnings, the exclusion restriction
would not work if Zi was directly influencing outcomes, independent of miitary
experience, by example by generating a higher education level. In that case, we
could have Ei = α + βZi + vi, where Ei is education, and, for example, y0

i =
µi+δ+λEi+U0

i . We then have yd,zi = µi+δ+λ(α+βz+vi)+U0
i +d(ᾱ+θµi+ηi)

which depends on z and thus the exclusion restriction does not hold any more.

Let us now state the independence assumption:

Hypothesis 4.3 (Independence). We assume that Zi is independent from the
other determinants of Yi and Di:

(Y 1
i , Y

0
i , D

1
i , D

0
i ) ⊥⊥ Zi.

Remark. Why do we say that independence from the potential outcomes is the
same as independence from the other determinants of Yi and Di? Because the
only sources of variation that remain in Y di and Dz

i are the other sources of
variations (that is not the treatment Di = d nor the instrument variable Zi = z).

Example 4.4. In our example, this assumption is also satisfied.

If we assumed that unobserved determinants of earnings contained in U0
i are

correlated with the instrument value, then we would have a problem. For example,
if children that leave close to college have also rich parents, or parents that
spend a lot of time with them, or parents with large networks, there probably
is a correlation between distance to college and earnings in the absence of the
program. For the draft lottery example, you might have that people with a
high draft lottery number who have well-connected parents obtain discharges on
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special medical grounds. Is that a violation of the independence assumption?
Actually no. Indeed, these individuals are simply going to become never takers
(they avoid the draft whatever their lottery number). But Zi is still independent
from the level of connections of the parents. For the independence assumption
to fail in the draft lottery number example, you would need that children of
well-connected parents obtain lower lottery numbers because the lottery is rigged.
In that case, since well-connected individuals would have had higher earnings
even absent the lottery, there is a negative correlation between y0

i and having a
high draft lottery number (Zi).

The last assumption we need in order to identify the Local Average Treatment
Effect is that of Monotonicity. We already know this assumption:

Hypothesis 4.4 (Monotonicity). We assume that the instrument moves every-
one in the population in the same direction:

∀i, either D1
i ≥ D0

i or D1
i ≤ D0

i .

Without loss of generality, we generally assume that ∀i, D1
i ≥ D0

i . As a
consequence, there are no defiers.

Example 4.5. In our example, this assumption is not satisfied.

There are defiers, as Figure 4.1 shows, when ξi = 0 and thus κi = κ. Indeed, in
that case, for the individuals who are such that ȳ − κ < yBi + Vi ≤ ȳ, we have
D1
i = 1[yBi + κ+ Vi ≤ ȳ] = 0 and D0

i = 1[yBi + Vi ≤ ȳ] = 1. This would happen
for example if some people would go to college less if their house is located closer
to the college, maybe for example because they have a preference not to stay at
their parents’ house.

Remark. Why are defiers a problem for the instrumental variable strategy?
Because the Intention to Treat Effect that measures the difference in expected
outcomes at the two levels of the instrument is going to be characterized by
two-way flows in and out of the program, as we have already seen with Theorem
3.10. This means that some treatment effects will have negative weights in the
ITE formula. In that case, you might have a negative Intention to Treat Effect
despite the treatment having positive effects for everyone, or you might under
estimate the true effect of the treatment. This matters only when the treatment
effects are heterogeneous.

Example 4.6. Let us detail how non-monotonicity and the existence defiers act
on the ITE in our example, since we now have defiers. The first very important
thing to understand is that all the problems we have happend because treatment
effects are heterogeneous AND they are correlated with the type of individuals:
defiers and compliers do not have the same distribution of treatment effects and,
case in point, they do not have the same average treatment effects. The average
effects of the treatment on compliers and defiers are not the same. Let us first
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look at the distribution of treatment effects among compliers and defiers in the
sample and in the population.

In order to derive the distribution of αi conditional on Type in the population, we
need to derive the joint distribution of αi and yBi + Vi and use the trmtvnorm
package to recover its density when it is truncated. This distribution is normal
and fully characterized by its mean and covariance matrix.

(αi, yBi + Vi) ∼ N
(
ᾱ+ θµ̄, µ̄,

(
θ2σ2

µ + σ2
η (θ + γ)σ2

µ + ρη,ωσ
2
ησ

2
ω

(θ + γ)σ2
µ + ρη,ωσ

2
ησ

2
ω (1 + γ2)σ2

µ + σ2
U + σ2

ω

))

Let us write a function to generate them.
mean.alpha.yBV <- c(param['baralpha']+param['theta']*param['barmu'],param['barmu'])
cov.alpha.yBV <- matrix(c((param['theta']ˆ2)*param['sigma2mu']+param['sigma2eta'],

(param['theta']+param['gamma'])*param['sigma2mu']+param['rhoetaomega']*param['sigma2eta']*param['sigma2omega'],
(param['theta']+param['gamma'])*param['sigma2mu']+param['rhoetaomega']*param['sigma2eta']*param['sigma2omega'],
(1+param['gamma']ˆ2)*param['sigma2mu']+param['sigma2U']+param['sigma2omega']),2,2,byrow=TRUE)

# density of alpha for compliers
lower.cut.comp <- c(-Inf,log(param['barY']))
upper.cut.comp <- c(Inf,log(param['barY'])+param['barkappa'])
d.alpha.compliers <- function(x){
return(dtmvnorm.marginal(xn=x,n=1,mean=mean.alpha.yBV,sigma=cov.alpha.yBV,lower=lower.cut.comp,upper=upper.cut.comp))

}
# density of alpha for defiers
lower.cut.def <- c(-Inf,log(param['barY']-param['underbarkappa']))
upper.cut.def <- c(Inf,log(param['barY']))
d.alpha.defiers <- function(x){
return(dtmvnorm.marginal(xn=x,n=1,mean=mean.alpha.yBV,sigma=cov.alpha.yBV,lower=lower.cut.def,upper=upper.cut.def))

}

Let us now plot the empirical and theoretical distributions of the treatment
effects for compliers and defiers.
# building the data frame
alpha.types <- as.data.frame(cbind(alpha,C,D,AT,NT)) %>%

mutate(
Type = ifelse(AT==1,"Always Takers",

ifelse(NT==1,"Never Takers",
ifelse(C==1,"Compliers","Defiers")))

) %>%
mutate(Type = as.factor(Type))

ggplot(filter(alpha.types,Type=="Compliers" | Type=="Defiers"), aes(x=alpha, colour=Type)) +
geom_density(linetype="dashed") +
geom_function(fun = d.alpha.compliers, colour = "red") +
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geom_function(fun = d.alpha.defiers, colour = "blue") +
ylab('density') +
theme_bw()
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Figure 4.3: Distribution of treatment effects by Type in the sample (dashed line)
and in the population (full line)

Figure 4.3 shows that the two distributions are actually very similar in our
example. The distribution for the compliers is slightly above that for the defiers,
meaning that the defiers should have lower expected outcomes in the population.
Let us check that by computing the average outcomes of compliers and defiers
both in the sample and in the population.
# sample means
mean.alpha.compliers.samp <- mean(alpha[C==1])
mean.alpha.defiers.samp <- mean(alpha[D==1])

# population means
mean.alpha.compliers.pop <- mtmvnorm(mean=mean.alpha.yBV,sigma=cov.alpha.yBV,lower=lower.cut.comp,upper=upper.cut.comp,doComputeVariance=FALSE)[[1]]
mean.alpha.defiers.pop <- mtmvnorm(mean=mean.alpha.yBV,sigma=cov.alpha.yBV,lower=lower.cut.def,upper=upper.cut.def,doComputeVariance=FALSE)[[1]]

In the population, the average treatment effect for compliers is equal to 0.17
and the average treatment effect for defiers is equal to 0.14. In the sample, the
average treatment effect for compliers is equal to 0.2 and the average treatment
effect for defiers is equal to 0.16.

The difference between the treatment effect for compliers and defiers is a problem
for the Wald estimator. Let’s look at how the Wald estimator behaves in the
population (in order to avoid considerations due to sampling noise). By Theorem
3.10, the numerator of the Wald estimator is equal to the difference between
the average treatment on compliers and the average treatment effect on defiers
weighted by their respective proportions in the population. In order to be able
to compute the Wald estimator, we need to compute the proportion of compliers
and of defiers in the population. These proportions are equal to:
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Pr(Ti = c) = Pr(ȳ < yBi + Vi ≤ ȳ + κ̄ ∩ κi = −κ̄)
= Pr(ȳ < yBi + Vi ≤ ȳ + κ̄)pξ

Pr(Ti = d) = Pr(ȳ − κ < yBi + Vi ≤ ȳ ∩ κi = κ)
= Pr(ȳ − κ < yBi + Vi ≤ ȳ)(1− pξ),

where the second equality follows from the fact that ξ is independent from
yBi + Vi and uses the fact that Pr(A ∩ B) = Pr(A|B) Pr(B). Since yBi + Vi is
normally distributed and we know its mean and variance, these proportions can
be computed as:

Pr(Ti = c) = pξ

Φ

 ȳ + κ̄− µ̄√
(1 + γ2)σ2

µ + σ2
U + σ2

ω

− Φ

 ȳ − µ̄√
(1 + γ2)σ2

µ + σ2
U + σ2

ω


Pr(Ti = d) = (1− pξ)

Φ

 ȳ − µ̄√
(1 + γ2)σ2

µ + σ2
U + σ2

ω

− Φ

 ȳ − κ− µ̄√
(1 + γ2)σ2

µ + σ2
U + σ2

ω

 .

Let’s write functions to compute these objects:
# proportion compliers
Prop.Comp <- function(param){

first <- pnorm((log(param['barY'])+param['barkappa']-param['barmu'])/(sqrt((1+param['gamma']ˆ2)*param['sigma2mu']+param['sigma2U']+param['sigma2omega'])))
second <- pnorm((log(param['barY'])-param['barmu'])/(sqrt((1+param['gamma']ˆ2)*param['sigma2mu']+param['sigma2U']+param['sigma2omega'])))
return(param['pxi']*(first - second))

}

# proportion defiers
Prop.Def <- function(param){
first <- pnorm((log(param['barY'])-param['barmu'])/(sqrt((1+param['gamma']ˆ2)*param['sigma2mu']+param['sigma2U']+param['sigma2omega'])))
second <- pnorm((log(param['barY'])-param['underbarkappa']-param['barmu'])/(sqrt((1+param['gamma']ˆ2)*param['sigma2mu']+param['sigma2U']+param['sigma2omega'])))
return((1-param['pxi'])*(first - second))

}

In our example, the proportion of compliers is equal to 0.33 and the proportion of
defiers is equal to 0.01. As a consequence, the population value of the numerator
of the Wald estimator is equal to 0.05. In the Wald estimator, this quantity is
divided by the difference between the proportion of participants when Zi = 1
and when Zi = 0. We have already computed this quantity earlier, but it is
nice to try to compute it in a different way using the types. The difference in
the proportion of participants when Zi = 1 and when Zi = 0 is indeed equal to
the difference in the proportion of compliers and the proportion of defiers. The
difference between the proportion of compliers and the proportion of defiers is
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equal to 0.32, while the difference between the proportion of participants when
Zi = 1 and when Zi = 0 is equal to 0.32. It is reassuring that we find the
same thing (actually, full disclosure, I did not find the same thing at first, and
this help me spot a mistake in the formulas for the proportions of participants:
mistakes are normal and natural and that is how we learn and grow).

So we are now equipped to compute the value of the Wald estimator in the
population in our model without monotonicity. It is equal to 0.172. In practice,
the bias of the Wald estimator is rather small for the average treatment effect on
the compliers (remember that it is equal to 0.171). In order to understand why,
it is useful to see that the bias of the Wald estimator for the average treatment
effect on the compliers is equal to:

E[∆Y
i |Ti = c]−∆Y

Wald = E[∆Y
i |Ti = c] + (E[∆Y

i |Ti = c]− E[∆Y
i |Ti = d]) Pr(Ti = d)

Pr(Ti = c)− Pr(Ti = d) ,

where the equality follows from Theorem 3.10 and some algebra. In the absence of
Monotonicity, when the impact on defiers is smaller than the impact of compliers,
the Wald estimator is baised upward for the effect on the compliers (as it happens
in our example). In a model in which the effect of the treatment is larger on defiers
than on compliers, the Wald estimator is biased downwards for the effect on
compliers because defiers make the outcome of the control group seem too good.
In the extreme, when E[∆Y

i |Ti = d] > E[∆Y
i |Ti = c](1 + Pr(Ti=c)−Pr(Ti=d)

Pr(Ti=d) ), the
Wald estimator can be negative whereas the effects on compliers and on defiers
are both positive. This happens when the effect on defiers is 1+ Pr(Ti=c)−Pr(Ti=d)

Pr(Ti=d)
times larger than the effect on compliers. In our case, that means that the effect
on defiers should be 26 times larger than the effect on compliers for the Wald
estimator to be negative, that is to say the effect on defiers should be equal to
4.41, really much much much larger than the effect on compliers.

From there, we are going to explore three strategies in order to identify some
true effect of the treatment using the Wald estimator:

• The first strategy has been recently proposed by de Chaisemartin (2017).
It is valid in a model without monotonicity.

• The second strategy assumes that the heterogeneity in treatment effects is
uncorrelated to the treatment.

• The last strategy is due to Imbens and Angrist (1994) and assumes that
Monotonicity holds.

Let’s review these solutions in turn.

4.1.2.1 Identification without Monotonicity

The approach delineated by de Chaisemartin (2017) does not assume away
non-monotonicity. Clement instead assumes that we can divide the population

https://drive.google.com/file/d/16XWlDECIvreM7l_NHe-JkXgyuPhFT1QG/view
https://drive.google.com/file/d/16XWlDECIvreM7l_NHe-JkXgyuPhFT1QG/view
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of compliers in two-subpopulations: the compliers-defiers (Ti = cd) and the
surviving-compliers (Ti = sc). The main assumption in Clement’s approach
is that (i) the compliers-defiers are in the same proportion as the defiers and
(ii) that the average effect of the treatment on the compliers defiers is equal as
the average effect of the treatment on the defiers. These two assumptions can
be formalized as follows:

Hypothesis 4.5 (Compliers-defiers). We assume that there exists as subpopu-
lation of compliers that are in the same proportion as the defiers and for whom
the average effect of the treatment is equal as the average effect of the treatment
on the defiers:

(Ti = c) = (Ti = cd) ∪ (Ti = sc)
Pr(Ti = cd) = Pr(Ti = d)

E[Y 1
i − Y 0

i |Ti = cd] = E[Y 1
i − Y 0

i |Ti = d].

The first equation in Assumption 4.5 imposes that the compliers-defiers and
the surviving-compliers are a partition of the population of compliers. From
Assumption 4.5, we can prove the following theorem:

Theorem 4.1 (Identification of the effect on the surviving-compliers). Under
Assumptions 4.1, 4.2, 4.3 and 4.5, the Wald estimator identifies the effect of the
treatment on the surviving-compliers:

∆Y
Wald = ∆Y

sc,

with:

∆Y
Wald = E[Yi|Zi = 1]− E[Yi|Zi = 0]

Pr(Di = 1|Zi = 1)− Pr(Di = 1|Zi = 0)
∆Y
sc = E[Y 1

i − Y 0
i |Ti = sc].

Proof. Under Assumptions 4.2 and 4.3, Theorems 3.10 and 3.12 imply that the
numerator of the Wald estimator is equal to ∆Y

ITE with:

∆Y
ITE = E[Y 1

i − Y 0
i |Ti = c] Pr(Ti = c)− E[Y 1

i − Y 0
i |Ti = d] Pr(Ti = d).

Now, we have that the effect on compliers can be decomposed in the effect on
surviving-compliers and the effect on compliers-defiers using the Law of Iterated
Expectations and the fact that Ti = sc⇒ Ti = c and Ti = cd⇒ Ti = c:
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∆Y
c = E[Y 1

i − Y 0
i |Ti = sc] Pr(Ti = sc|Ti = c) + E[Y 1

i − Y 0
i |Ti = cd] Pr(Ti = cd|Ti = c),

Now, using the fact that Pr(Ti = sc|Ti = c) Pr(Ti = c) = Pr(Ti = sc) and
Pr(Ti = cd|Ti = c) Pr(Ti = c) = Pr(Ti = cd) (because Pr(A|B) Pr(B) =
Pr(A ∩B) and Pr(A ∩B) = Pr(A) if A⇒ B), we have:

∆Y
ITE = E[Y 1

i − Y 0
i |Ti = sc] Pr(Ti = sc)

+ E[Y 1
i − Y 0

i |Ti = cd] Pr(Ti = cd)− E[Y 1
i − Y 0

i |Ti = d] Pr(Ti = d).

The second part of the right-hand side of the above equation is equal to zero
by virtue of Assumption 4.5. Now, under Assumptions 4.1, 4.2 and 4.3, we
know, from the proof of Theorem 3.9, that Pr(Di = 1|Zi = 1)− Pr(Di = 1|Zi =
0) = Pr(Ti = c) − Pr(Ti = d). Under Assumption 4.5, we have Pr(Ti = c) =
Pr((Ti = cd) ∪ (Ti = sc)) = Pr(Ti = cd) + Pr(Ti = sc). Replacing Pr(Ti = c)
gives Pr(Di = 1|Zi = 1)− Pr(Di = 1|Zi = 0) = Pr(Ti = sc). Dividing ∆Y

ITE by
Pr(Ti = sc) gives the result.

Remark. de Chaisemartin (2017) shows in his Theorem 2.1 that the reciprocal
of Theorem 4.1 is actually valid: if there exists surviving-compliers such that
their effect is estimated by the Wald estimator and their proportion is equal to
the denominator of the Wald estimator, then it has to be that there exists a
sub-population of compliers-defiers that are in the same proportion as the defiers
and have the same average treatment effect.

Example 4.7. Let us now see if the conditions in de Chaisemartin (2017) are
verified in our numerical example.

I have bad news: they are not. It is not super easy to see why, but an intuitive
explanation is that the average effect on the defiers in our model is taken
conditional on yBi +Vi ∈]ȳ−κ, ȳ] while the effect on compliers is taken conditional
on yBi + Vi ∈]ȳ, ȳ + κ̄]. These two intervals do not overlap. Since the expected
value of the treatment effect conditional on yBi + Vi = v is monotonous in v
(because both variables come from a bivariate normal distribution), then all the
effects on the defiers interval are either smaller or larger than all the effects on
the compliers interval, making it impossible to find a sub-population of compliers
that have the same average effect of the treatment as the defiers.

More formally, it is possible to prove this result by using the concept of Marginal
Treatment Effect developed by Heckman and Vytlacil (1999). I might devote a
specific section of the book to the MTE and its derivations. For now, I let it as
a possibility.

What can we do then? Probably the best that we can do is to find κ∗ such
that Pr(ȳ < yBi + V ≤ ȳ + κ∗)pξ = Pr(Ti = d), that is the value such that the

https://drive.google.com/file/d/16XWlDECIvreM7l_NHe-JkXgyuPhFT1QG/view
https://drive.google.com/file/d/16XWlDECIvreM7l_NHe-JkXgyuPhFT1QG/view
https://www.pnas.org/content/pnas/96/8/4730.full.pdf
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interval of values of yBi + V that are for compliers and closest to the interval for
defiers and that contains the same proportion of compliers as there are defiers.
This value is going to produce an average effect for compliers-defiers as close as
possible to the average effect on defiers. It can be computed as follows:

κ∗ = µ̄− ȳ +
√

(1 + γ2)σ2
µ + σ2

U + σ2
ωΦ−1

(
Φ

 ȳ − µ̄√
(1 + γ2)σ2

µ + σ2
U + σ2

ω


+ 1− pξ

pξ

Φ

 ȳ − µ̄√
(1 + γ2)σ2

µ + σ2
U + σ2

ω

− Φ

 ȳ − κ− µ̄√
(1 + γ2)σ2

µ + σ2
U + σ2

ω

)

Let’s write functions to compute κ∗, the implied proportion of compliers-defiers
and the average effect of the treatment on compliers-defiers and on surviving-
compliers:
# kappa star
KappaStar <- function(param){

prop.def <- Prop.Def(param)
prop.below.bary <- pnorm((log(param['barY'])-param['barmu'])/(sqrt((1+param['gamma']ˆ2)*param['sigma2mu']+param['sigma2U']+param['sigma2omega'])))
st.dev.yB.V <- sqrt((1+param['gamma']ˆ2)*param['sigma2mu']+param['sigma2U']+param['sigma2omega'])
return(param['barmu']-log(param['barY'])+st.dev.yB.V*qnorm(prop.below.bary+prop.def/param['pxi']))

}

# proportion of compliers-defiers
Prop.Comp.Def <- function(param){

first <- pnorm((log(param['barY'])+KappaStar(param)-param['barmu'])/(sqrt((1+param['gamma']ˆ2)*param['sigma2mu']+param['sigma2U']+param['sigma2omega'])))
second <- pnorm((log(param['barY'])-param['barmu'])/(sqrt((1+param['gamma']ˆ2)*param['sigma2mu']+param['sigma2U']+param['sigma2omega'])))
return(param['pxi']*(first - second))

}

# mean impact on compliers-defiers
lower.cut.comp.def <- c(-Inf,log(param['barY']))
upper.cut.comp.def <- c(Inf,log(param['barY'])+KappaStar(param))
mean.alpha.comp.def.pop <- mtmvnorm(mean=mean.alpha.yBV,sigma=cov.alpha.yBV,lower=lower.cut.comp.def,upper=upper.cut.comp.def,doComputeVariance=FALSE)[[1]]

# mean impact on surviving compliers
lower.cut.surv.comp <- c(-Inf,log(param['barY'])+KappaStar(param))
upper.cut.surv.comp <- c(Inf,log(param['barY'])+param['barkappa'])

mean.alpha.surv.comp.pop <- mtmvnorm(mean=mean.alpha.yBV,sigma=cov.alpha.yBV,lower=lower.cut.surv.comp,upper=upper.cut.surv.comp,doComputeVariance=FALSE)[[1]]

The first have that κ∗ = 0.0452. For this value of κ∗, we have that Pr(Ti = cd) =
0.0128. As expected, this is very close to the proportion of compliers in the
population: Pr(Ti = d) = 0.0128. Finally, the average treatment effect on the
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compliers-defiers is equal to: ∆y
cd = 0.1457. As expected, but luckily enough,

since it was absolutely not sure, it is very close to the to the average treatment
effect on the defiers: ∆y

d = 0.1445. So, in our model, Assumption 4.5 is almost
satisfied, and so does Theorem 4.1. As a consequence, the Wald estimator is
very close to the effect on the surviving-compliers. Indeed, the Wald estimator,
in the population, is equal to ∆y

Wald = 0.172156, while the average effect on
surviving-compliers is equal to ∆y

sc = 0.172108.

4.1.2.2 Identification under Independence of treatment effects

Another way to get around the issue of Non-Monotonicity is simply to assume
away any meaningful role for treatment effect heterogeneity. One approach
to that would simply be to assume that treatment effects are constant across
individuals. I leave to the reader to prove that in that case, the Wald estimator
would recover the treatment effect under only Independence and Exclusion
Restriction. We are going to use a slightly more general approach here by
assuming that treatment effect heterogeneity is unrelated to the reaction to the
instrument:

Hypothesis 4.6 (Independent Treatment Effects). We assume that the treat-
ment effect is independent from potential reactions to the instrument:

∆Y
i ⊥⊥ (D1

i , D
0
i ).

We can now prove that, under Assumption 4.6, the Wald estimator identifies
the Average Treatment Effect (ATE), the average effect of the Treatment on
the Treated (TT) and the average effect on compliers and on defiers. The first
thing to know before we state the result is that, under Assumption 4.6, all these
average treatment effects are equal to each other. This is a direct implication of
the following lemma:

Lemma 4.1 (Independence of Treatment Effects from Types). Under Assump-
tion 4.6, the treatment effect is independent from types:

∆Y
i ⊥⊥ Ti.

Proof. Lemma (4.2) in Dawid (1979) states that if X ⊥⊥ Y |Z and U is a function
of X, then U ⊥⊥ Y |Z. Since Ti is a function of (D1

i , D
0
i ) under Assumption 4.6,

Lemma 4.1 follows.

A direct corollary of Lemma 4.1 is:

Corollary 4.1 (Independence of Treatment Effects and Average Effects). Under
Assumption 4.6, the Average Treatment Effect (ATE), the average effect of the

https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1979.tb01052.x
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Treatment on the Treated (TT) and the average effect on compliers and on defiers
are all equal:

∆Y
ATE = ∆Y

TT (1) = ∆Y
TT (0) = ∆Y

c = ∆Y
d .

with:

∆Y
TT (z) = E[Y 1

i − Y 0
i |Di = 1, Zi = z].

Proof. Using Lemma 4.1, we have that:

∆Y
c = ∆Y

d = ∆Y
at = ∆Y

nt.

Because Ti is a partition, we have ∆Y
ATE = ∆Y

c Pr(Ti = c) + ∆Y
d Pr(Ti =

d) + ∆Y
at Pr(Ti = at) + ∆Y

nt Pr(Ti = nt) = ∆Y
c (since Pr(Ti = c) + Pr(Ti =

d) + Pr(Ti = at) + Pr(Ti = nt) = 1). Finally, we also have that ∆Y
TT (1) =

∆Y
c Pr(Ti = c|Di = 1, Zi = 1) + ∆Y

at Pr(Ti = at|Di = 1, Zi = 1) = ∆Y
c and

∆Y
TT (0) = ∆Y

d Pr(Ti = d|Di = 1, Zi = 0) + ∆Y
at Pr(Ti = at|Di = 1, Zi = 0) = ∆Y

c ,
since (Di = 1) ∩ (Zi = 1) ⇒ (Ti = c) ∪ (Ti = at) and (Di = 1) ∩ (Zi = 0) ⇒
(Ti = d) ∪ (Ti = at).

We are now equipped to state the final result of this section:

Theorem 4.2 (Identification under Independent Treatment Effect). Under
Assumptions 4.1, 4.2, 4.3 and 4.6, the Wald estimator identifies the average
effect of the Treatment on the Treated:

∆Y
Wald = ∆Y

TT .

Proof. Using the formula for the Wald estimator, we have, for the two components
of its numerator:

E[Yi|Zi = 1] = E[Y 0
i + (Y 1

i − Y 0
i )Di|Zi = 1]

= E[Y 0
i |Zi = 1] + E[∆Y

i |Di = 1, Zi = 1] Pr(Di = 1|Zi = 1)
= E[Y 0

i |Zi = 1] + ∆Y
TT (1) Pr(Di = 1|Zi = 1)

E[Yi|Zi = 0] = E[Y 0
i + (Y 1

i − Y 0
i )Di|Zi = 0]

= E[Y 0
i |Zi = 0] + E[∆Y

i |Di = 0, Zi = 1] Pr(Di = 1|Zi = 0)
= E[Y 0

i |Zi = 0] + ∆Y
TT (0) Pr(Di = 1|Zi = 0),
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where the first equalities use Assumption 4.2. Now, under Assumption 4.6,
Corollary 4.1 implies that ∆Y

TT (0) = ∆Y
TT (1) = ∆Y

TT . We thus have that the
numerator of the Wald estimator is equal to:

E[Yi|Zi = 1]− E[Yi|Zi = 0] = ∆Y
TT (Pr(Di = 1|Zi = 1)− Pr(Di = 1|Zi = 0))

+ E[Y 0
i |Zi = 1]− E[Y 0

i |Zi = 0].

Assumption 4.3 implies that E[Y 0
i |Zi = 1] = E[Y 0

i |Zi = 0]. Using Assumption
4.1 proves the result.

4.1.2.3 Identification under Monotonicity

The classical approach to identification using instrumental variables is due to
Imbens and Angrist (1994) and Angrist, Imbens and Rubin (1996). It rests on
Assumption 4.4 or Monotonicity that we are now familiar with, that requires
that the effect of the instrument on treatment participation moves everyone in
the same direction.

Remark. For the rest of the section, we will assume that ∀i, D1
i ≥ D0

i . It is
without loss of generality, since if the initial treatment does not comply with
this requirement, you can simply redefine a new treatment equal to −Di.

Under Monotonicity, there are no defiers. This is what the following lemma
shows:

Lemma 4.2. Under Assumption 4.4, there are no defiers a.s.:

Pr(Ti = c) = 0.

Proof. Under Assumption 4.4, ∀i, D1
i ≥ D0

i . As a consequence, Pr(D1
i < D0

i ) =
0. Since defiers are defined as D1

i < D0
i , the result follows.

In the absence of defiers, the Wald estimator identifies the average effect of the
treatment on the compliers, also called the Local Average Treatment Effect:

Theorem 4.3. Under Assumptions 4.1, 4.2, 4.3 and 4.4, the Wald estimator
identifies the average effect of the treatment on the compliers, also called the
Local Average Treatment Effect:

∆Y
Wald = ∆Y

LATE .

Proof. Using Theorem 3.9 directly proves the result.

https://www.jstor.org/stable/2951620
https://www.jstor.org/stable/2291629
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Remark. The magic of the instrumental variables setting applies again. By
moving the instrument, we are able to learn something about the causal effect of
the treatment. Monotonicity is a very strong assumption though, as are Indepen-
dence and Exclusion Restriction. They are very rarely met in practice. Even the
case of RCTs with encouragement design, where Independence holds by design,
might be affected by failures of Exclusion Restriction and/or Monotonicity.

Example 4.8. Let’s see how monotonicity works in our example.

First, we have to generate a model in which monotonicity holds. For that, we
need to shut down heterogeneous reactions to the instrument. In practice, we are
going to replace the participation equation in our model, which was characterized
by a random coefficient, by the following one, which has a constant coefficient:

Di = 1[yBi − κ̄Zi + Vi ≤ ȳ]

As a consequence, we have no more defiers and monotonicity holds. Let us now
generate the data from the model with monotonicity:
set.seed(12345)
N <-1000
cov.eta.omega <- matrix(c(param["sigma2eta"],param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["sigma2omega"]),ncol=2,nrow=2)
eta.omega <- as.data.frame(mvrnorm(N,c(0,0),cov.eta.omega))
colnames(eta.omega) <- c('eta','omega')
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
Z <- rbinom(N,1,param["pZ"])
V <- param["gamma"]*(mu-param["barmu"])+eta.omega$omega
Ds[yB-param["barkappa"]*Z+V<=log(param["barY"])] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta.omega$eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)

We can now define the types variable Ti:
D1 <- ifelse(yB-param["barkappa"]+V<=log(param["barY"]),1,0)
D0 <- ifelse(yB+V<=log(param["barY"]),1,0)
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AT <- ifelse(D1==1 & D0==1,1,0)
NT <- ifelse(D1==0 & D0==0,1,0)
C <- ifelse(D1==1 & D0==0,1,0)
D <- ifelse(D1==0 & D0==1,1,0)
Type <- ifelse(AT==1,'a',

ifelse(NT==1,'n',
ifelse(C==1,'c',

ifelse(D==1,'d',""))))

data.mono <- data.frame(cbind(Type,C,NT,AT,D1,D0,Y,y,Y1,Y0,y0,y1,yB,alpha,U0,eta.omega$eta,epsilon,Ds,Z,mu,UB))

The first thing we can check is that there are no defiers. For that, let’s count
the number of individuals who have Ti = 1. It is equal to 0.

One thing that helped me understand how the IV approach under monotonicity
works is the following graph:
plot(yB[AT==1]+V[AT==1],y[AT==1],pch=1,xlim=c(5,11),ylim=c(5,11),xlab="yB+V",ylab="Outcomes")
points(yB[NT==1]+V[NT==1],y[NT==1],pch=1,col='blue')
points(yB[C==1 & Ds==1]+V[C==1 & Ds==1],y[C==1 & Ds==1],pch=1,col='red')
points(yB[C==1 & Ds==0]+V[C==1 & Ds==0],y[C==1 & Ds==0],pch=1,col='green')
abline(v=log(param["barY"]),col="red")
abline(v=log(param["barY"])+param['barkappa'],col="red")
text(x=c(log(param["barY"]),log(param["barY"])+param['barkappa']),y=c(5,5),labels=c(expression(bar('y')),expression(bar('y')+bar(kappa))),pos=c(2,4),col=c("red","red"))
legend(5,10.5,c('AT','NT','C|D=1','C|D=0'),pch=c(1,1,1,1),col=c("black",'blue',"red",'green'),ncol=1)
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Figure 4.4: Types under Monotonicity

What 4.4 shows is that the IV acts as a randomized controlled trial among com-
pliers. Within the population of compliers, whether one receives the treatment
or not is as good as random. If we actually knew who the compliers were, we
could directly estimate the effect of the treatment by comparing the outcomes
of the treated compliers to the outcomes of the untreated compliers. Actually,
this approach, applied in our sample, yields an estimated treatment effect on
the compliers of 0.14, whereas the simple comparison of participants and non
participants would give an estimate of -0.93. In our sample, the average effect of
the treatment on compliers is actually equal to 0.18.
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Let us finally check that Theorem 4.3 works in the population in our new model.
We need to compute the various parts of the Wald estimator and the average
effect of the treatment on the compliers. The key to understand the Wald
estimator is to see that its numerator is composed of the difference between
two means, with both means containing the average outcomes of always takers
and never takers weighted by their respective proportions in the population, as
shown in the proof of Theorem 4.3. These two means cancel out, leaving only the
differences in the means of the compliers in and out of the treatment, weighted
by their proportion in the population. The denominator of the Wald estimator
simply provides an estimate of the proportion of compliers. In order to illustrate
these intuitions in our example, I am going to use the formula for a truncated
multivariate normal variable and the package tmvtnorm. The most important
thing to notice here is that (y0

i , y
1
i , y

B
i + Vi) ∼ N (µ̄+ δ, µ̄(1 + θ) + δ + ᾱ, µ̄,C)

with:

C =

 σ2
µ + ρ2σ2

U + σ2
ε (1 + θ)σ2

µ + ρ2σ2
U + σ2

ε (1 + γ)σ2
µ + ρσ2

U

(1 + θ)σ2
µ + ρ2σ2

U + σ2
ε (1 + θ2)σ2

µ + ρ2σ2
U + σ2

ε + σ2
η (1 + θ + γ)σ2

µ + ρσ2
U + ρη,ωσ

2
ησ

2
ω

(1 + γ)σ2
µ + ρσ2

U (1 + θ + γ)σ2
µ + ρσ2

U + ρη,ωσ
2
ησ

2
ω (1 + γ2)σ2

µ + σ2
U + σ2

ω


We now simply have to derive the mean outcomes and proportions of each type
in the population in order to form the Wald estimator. Let me first derive the
joint distribution of the portential outcomes and the means and proportions of
each type in the population.
mean.y0.y1.yBV <- c(param['barmu']+param['delta'],param['barmu']*(1+param['theta'])+param['delta']+param['baralpha'],param['barmu'])
cov.y0.y1.yBV <- matrix(c(param['sigma2mu']+param['rho']ˆ2*param['sigma2U']+param['sigma2epsilon'],

(1+param['theta'])*param['sigma2mu']+param['rho']ˆ2*param['sigma2U']+param['sigma2epsilon'],
(1+param['gamma'])*param['sigma2mu']+param['rho']*param['sigma2U'],
(1+param['theta'])*param['sigma2mu']+param['rho']ˆ2*param['sigma2U']+param['sigma2epsilon'],
(1+param['theta']ˆ2)*param['sigma2mu']+param['rho']ˆ2*param['sigma2U']+param['sigma2epsilon']+param['sigma2eta'],
(1+param['theta']+param['gamma'])*param['sigma2mu']+param['rho']*param['sigma2U']+param['rhoetaomega']*param['sigma2eta']*param['sigma2omega'],
(1+param['gamma'])*param['sigma2mu']+param['rho']*param['sigma2U'],
(1+param['theta']+param['gamma'])*param['sigma2mu']+param['rho']*param['sigma2U']+param['rhoetaomega']*param['sigma2eta']*param['sigma2omega'],
(1+param['gamma']ˆ2)*param['sigma2mu']+param['sigma2U']+param['sigma2omega']),3,3,byrow=TRUE)

# cuts
#always takers
lower.cut.at <- c(-Inf,-Inf,-Inf)
upper.cut.at <- c(Inf,Inf,log(param['barY']))
# compliers
lower.cut.comp <- c(-Inf,-Inf,log(param['barY']))
upper.cut.comp <- c(Inf,Inf,log(param['barY'])+param['barkappa'])
# never takers
lower.cut.nt <- c(-Inf,-Inf,log(param['barY'])+param['barkappa'])
upper.cut.nt <- c(Inf,Inf,Inf)



176 CHAPTER 4. NATURAL EXPERIMENTS

# means by types
#always takers
mean.y1.at.pop <- mtmvnorm(mean=mean.y0.y1.yBV,sigma=cov.y0.y1.yBV,lower=lower.cut.at,upper=upper.cut.at,doComputeVariance=FALSE)[[1]][[2]]
mean.y0.at.pop <- mtmvnorm(mean=mean.y0.y1.yBV,sigma=cov.y0.y1.yBV,lower=lower.cut.at,upper=upper.cut.at,doComputeVariance=FALSE)[[1]][[1]]
# never takers
mean.y1.nt.pop <- mtmvnorm(mean=mean.y0.y1.yBV,sigma=cov.y0.y1.yBV,lower=lower.cut.nt,upper=upper.cut.nt,doComputeVariance=FALSE)[[1]][[2]]
mean.y0.nt.pop <- mtmvnorm(mean=mean.y0.y1.yBV,sigma=cov.y0.y1.yBV,lower=lower.cut.nt,upper=upper.cut.nt,doComputeVariance=FALSE)[[1]][[1]]
#compliers
mean.y1.comp.pop <- mtmvnorm(mean=mean.y0.y1.yBV,sigma=cov.y0.y1.yBV,lower=lower.cut.comp,upper=upper.cut.comp,doComputeVariance=FALSE)[[1]][[2]]
mean.y0.comp.pop <- mtmvnorm(mean=mean.y0.y1.yBV,sigma=cov.y0.y1.yBV,lower=lower.cut.comp,upper=upper.cut.comp,doComputeVariance=FALSE)[[1]][[1]]

# Proportion of each types
# always takers
prop.at.pop <- ptmvnorm.marginal(log(param['barY']),n=3,mean=mean.y0.y1.yBV,sigma=cov.y0.y1.yBV)[[1]]
# never takers
prop.nt.pop <- 1-ptmvnorm.marginal(log(param['barY'])+param['barkappa'],n=3,mean=mean.y0.y1.yBV,sigma=cov.y0.y1.yBV)[[1]]
# compliers
prop.comp.pop <- ptmvnorm.marginal(log(param['barY'])+param['barkappa'],n=3,mean=mean.y0.y1.yBV,sigma=cov.y0.y1.yBV)[[1]]-ptmvnorm.marginal(log(param['barY']),n=3,mean=mean.y0.y1.yBV,sigma=cov.y0.y1.yBV)[[1]]

# LATE
late.pop <- mean.y1.comp.pop-mean.y0.comp.pop
late.prop.comp.pop <- late.pop*prop.comp.pop
# Wald
num.Wald.pop <- (mean.y1.comp.pop*prop.comp.pop+mean.y1.at.pop*prop.at.pop+mean.y0.nt.pop*prop.nt.pop-(mean.y0.comp.pop*prop.comp.pop+mean.y1.at.pop*prop.at.pop+mean.y0.nt.pop*prop.nt.pop))
denom.Wald.pop <- (prop.at.pop+prop.comp.pop-prop.at.pop)
Wald.pop <- num.Wald.pop/denom.Wald.pop

We are now equipped to compute the Wald estimator in the population. Before
that, let us compute the LATE. We have ∆Y

LATE = 0.179. The Wald estimator
is equal to ∆Y

Wald = 0.179. They are obviously equal. This is because the
numerator of the Wald is equal to the product of the LATE multiplied by the
proportion of compliers (which is equal to 0.066). This is because the outcomes of
never takers and always takers cancel out on each separate term of the numerator
of the Wald estimator. Indeed, we have that the numerator of the Wald estimator
is equal to: 0.066.

4.1.3 Estimation
Estimation of the LATE under the IV assumptions closely follows the same steps
that we have delineated in Section 3.4.2:

1. First stage regression of Di on Zi: this estimates the impact of the
instrument on participation into the program and estimates the proportion
of compliers.

2. Reduced form regression of Yi on Zi: this estimates the impact of the
instrument on outcomes, a.k.a the ITE.
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3. Structural regression of Yi on Di using Zi as an instrument, which
estimates the LATE.

Let’s take these three steps in turn.

4.1.3.1 First stage regression

The first stage regression regresses Di on Zi and thus estimates the impact of
the instrument on treatment participation, which is equal to the proportion of
compliers. It can be run using the With/Without estimator or OLS (both are
numerically equivalent as Lemma A.3 shows) or OLS conditioning on observed
covariates.

Example 4.9. Let’s see how these three approaches fare in our example.
# WW first stage
WW.First.Stage.IV <- mean(Ds[Z==1])-mean(Ds[Z==0])
# Simple OLS
OLS.D.Z.IV <- lm(Ds~Z)
OLS.First.Stage.IV <- coef(OLS.D.Z.IV)[[2]]
# OLS conditioning on yB
OLS.D.Z.yB.IV <- lm(Ds~Z+yB)
OLSX.First.Stage.IV <- coef(OLS.D.Z.yB.IV)[[2]]

The WW estimator of the first stage impact of Zi on Di is equal to 0.374. The
OLS estimator of the first stage impact of Zi on Di is equal to 0.374. The OLS
estimator of the first stage impact of Zi on Di conditioning on yBi is equal to
0.339. Remember that the true proportion of compliers in the population in our
model is equal to 0.366.

4.1.3.2 Reduced form regression

The reduced form regression regresses Yi on Zi and thus estimates the impact of
the instrument on outcomes, which is equal to the ITE. It can be run using the
With/Without estimator or OLS (both are numerically equivalent as Lemma
A.3 shows) or OLS conditioning on observed covariates.

Example 4.10. Let’s see how these three approaches fare in our example.
# WW reduced form
WW.Reduced.Form.IV <- mean(y[Z==1])-mean(y[Z==0])
# Simple OLS
OLS.y.Z.IV <- lm(y~Z)
OLS.Reduced.Form.IV <- coef(OLS.y.Z.IV)[[2]]
# OLS conditioning on yB
OLS.y.Z.yB.IV <- lm(y~Z+yB)
OLSX.Reduced.Form.IV <- coef(OLS.y.Z.yB.IV)[[2]]

The WW estimator of the reduced form impact of Zi on yi is equal to -0.029.
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The OLS estimator of the reduced form impact of Zi on yi is equal to -0.029.
The OLS estimator of the reduced form impact of Zi on yi conditioning on yBi
is equal to 0.058. Remember that the true ITE in the population in our model
is equal to 0.066.

4.1.3.3 Structural regression

The final step of the analysis is to estimate the impact of Di on Yi using Zi as
an instrument. This can be done either by directly using the Wald estimator, by
dividing the estimate of the reduced form by the result of the first stage, or by
directly using the IV estimator (which is equivalent to the Wald estimator as
Theorem 3.15 shows) or the IV estimator conditional on covariates.

Example 4.11. Let’s see how these four approaches fare in our example.
# Wald structural form
Wald.Structural.Form.IV <- (mean(y[Z==1])-mean(y[Z==0]))/(mean(Ds[Z==1])-mean(Ds[Z==0]))
# Simple IV
TSLS.y.D.Z.IV <- ivreg(y~Ds|Z)
TSLS.Structural.Form.IV <- coef(TSLS.y.D.Z.IV)[[2]]
# IV conditioning on yB
TSLS.y.D.Z.yB.IV <- ivreg(y~Ds+yB|Z+yB)
TSLSX.Structural.Form.IV <- coef(TSLS.y.D.Z.yB.IV)[[2]]

The Wald estimator of the LATE is equal to ∆̂y
Wald = -0.078. The IV estimator

of the LATE is equal to ∆̂y
IV = -0.078, and is numerically identical to the Wald

estimator, as expected. The IV estimator of the LATE conditioning on yBi is
equal to 0.172. Remember that the true LATE in the population in our model
is equal to 0.179.

Remark. The last thing we might want to check is what the sampling noise of the
IV estimator looks like and whether it is reduced by conditioning on observed
covariates.

Example 4.12. Let’s see how sampling noise moves in our example.

Do it

4.1.4 Estimation of sampling noise
Remark. The framework we have seen here as been extended to multivalued
instruments or treatments by several papers. Imbens and Angrist (1994) extend
the framework to an ordered instrument. They show that the 2SLS estimator is
a weighted average of LATEs for each values of the instrument, with positive
weights summing to one. Angrist and Imbens (1995) extend the framework
to he case where the treatment is an ordered discrete variable and there are
multiple dichotomous instruments. They again show that the 2SLS estimator is
a weighted average of LATEs with positive weights summing to one. Heckman
and Vytlacil (1999) extend the framework to a case with a continuous instrument

https://www.jstor.org/stable/2951620
https://www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476535
https://www.pnas.org/content/96/8/4730
https://www.pnas.org/content/96/8/4730
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and show that one can the define a Marginal Treatment Effect (or MTE) that is
equal to the effect of the treatment on individuals that have the same unobserved
propensity to take the treatment. They show that the MTE can be identified by
a limiting form of Wald estimator that they call a Local Instrumental Variable
estimator. They also show that average treatment effect parameters such as TT,
ATE and LATE are all weighted averages of the MTE, with positive weights
summing to one. Under strong support conditions on the side of the instrument,
one can thus in principle recover all treatment effect parameters with a continuous
instrument.

Remark. One important concern with the first stage regression is that of weak
instruments. When Assumption 4.1 does not hold and the impact on the
instrument on take up is actually zero in the population, the Wald estimator is
not well-defined.

Expand

4.2 Regression Discontinuity Designs
To do

4.3 Difference In Differences
In Difference In Differences (a.k.a. DID), the difference between treated and
untreated before the treatment is used to approximate selection bias. As a
consequence, DID works by correcting the With/Without comparison after
treatment by the With/Without comparison before treatment and hopes that it
is enough to recover the TT. Hence the name Difference in Differences (DID),
since the estimator, in its simplest form, is a difference between two differences.
In this section, we are going to look at identification using DID, estimation and
estimation of sampling noise. At first, we are going to assume that we have only
access to two time periods. In that case, estimation and inference are pretty
straightforward. We will then examine the case of several time periods, but we
will first allow for only one treatment date. In that case, we will introduce the
standard tools used by applied researchers to analyze these types of designs: the
event study graph and the Two-Way Fixed Effects estimator (a.k.a. TWFE). We
will determine which effect is estimated by the TWFE estimator and what are
the goals of the event study graph. We will then look at the most complex case:
the staggered design, where we have several time periods (strictly more than two)
and the date of treatment differs across units. In the staggered design, troubles
start appearing for the TWFE estimator. We will survey these problems and the
proposed solutions to address them. Finally, we will look at the combination of
DID with instrumental variables (the DID-IV estimator) and see which specific
types of problems happen there as well. Let’s get to it.
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4.3.1 Difference In Differences with two time periods
Before getting into the rigorous derivations, let’s start with a very simple
illustration using our workhorse example.

Example 4.13. How does DID perform and what does it look like in our
example model?

Let’s first generate a dataset with selection bias.

y1
i = y0

i + ᾱ+ θµi + ηi

y0
i = µi + δ + U0

i

U0
i = ρUBi + εi

yBi = µi + UBi

UBi ∼ N (0, σ2
U )

Di = 1[yBi + Vi ≤ ȳ]
Vi = γ(µi − µ̄) + ωi

(ηi, ωi) ∼ N (0, 0, σ2
η, σ

2
ω, ρη,ω)

Let’s see how DID works on this data.
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Figure 4.5: Evolution of average outcomes in the treated and control group

Figure 4.5 shows the evolution of the mean log-outcomes for the treated and
untreated groups over time in our simulated dataset. We can see that in
the Before period, outcomes (yBi in that case) are much higher for the non
participants than for the participants, in agreement with the selection rule that
makes participation into the program more likely for individuals with lower
pre-treatment outcomes. The With/Without difference in outcomes before the
program takes place is ∆̂yB

WW = -1.361. Second, we see that the difference between
participants and non-participants decreases after receiving the treatment. This is
because the outcomes of the participants increase faster than the outcomes of the
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non participants. As a consequence, the With/Without difference in outcomes
after the program takes place is ∆̂y

WW = -1.154. The DID estimator is built by
comparing these two differences. In our example, ∆̂y

DID = 0.206. It is not too
far from the true treatment effect of ∆̂y

TT = 0.165.

Figure 4.5 also demonstrates that the DID estimator can also be seen as the
difference between the Before/After differences in outcomes of the treated and
the untreated. The Before/After difference in outcomes for the non participants
is ∆̂y

BA|D=0 = 0.046 while the Before/After difference for the participants is
∆̂y
BA|D=1 = 0.252, leading to the same DID estimand. One way to understand

the DID estimator is to see it as recreating the counterfactual trajectory of
the participants (show as a discontinuous line on Figure 4.5) by using the
trajectory of the non participants and making it start at the pre-treatment
level of the participants. This estimated counterfactual trajectory is shown
as the purple continuous line at the bottom of Figure 4.5. In our example,
the true counterfactual trajectory (the discontinuous line) and the estimated
counterfactual trajectory almost coincide, making the estimated counterfactual
outcome of the participants very close to their true counterfactual outcome (7.046
vs 7.087). The difference between these two quantities measures the bias of the
DID estimator, and we can see that it is very low in our example. The fact that
the Before/After difference in outcomes for the non participants approximates
well the counterfactual Before/After difference in outcomes for the participants
is THE crucial assumption of the DID estimator. It is called the parallel trends
assumption.

4.3.1.1 Identification

The formal setting for introducing the DID estimator is to start with two time
periods, Before and After (t = B and t = A respectively). Outcomes with
and without the treatment in both periods are denoted Y di,t, for d ∈ {0, 1}
and t ∈ {B,A}. Treatment participation in both periods is denoted Di,t for
t ∈ {B,A}. In the Before period, the treatment is unavailable, so that we get to
observe the potential outcomes of the agents in the absence of the treatment.
These two very specific requirements of DID are encoded in the following way:

Hypothesis 4.7 (No Treatment in the Before Period). We assume that no unit
in the population receives the treatment in the Before period: Di,B = 0, ∀i and
not all units receive the program in the After period, but some units receive it:
0 < Pr(Di,A = 1) < 1.

Under Assumption 4.7, and without loss of generality, we are going to write
Di = Di,A.

Hypothesis 4.8 (No Anticipation Effects). We assume that, in the Before
period, agents cannot anticipate that the program will happen in the After
period, or that they do not change their behavior as a consequence: Yi,B = Y 0

i,B ,
∀i.
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A consequence of Assumptions 4.7 and 4.8 is that we can write observed outcomes
as a function of treatment and potential outcomes using the usual switching
equation:

Yi,t = Y 1
i,tDi,t + Y 0

i,t(1−Di,t). (4.1)

The final very important assumption that we can make is to assume that the
trends in the potential outcomes in the absence the treatment are the same for
the treated and the untreated units:

Hypothesis 4.9 (Parallel Trends). We assume that the trends in the potential
outcomes in the absence the treatment are the same for the treated and the
untreated units:

E[Y 0
i,A|Di = 1]− E[Y 0

i,B |Di = 1] = E[Y 0
i,A|Di = 0]− E[Y 0

i,B |Di = 0].

Assumption 4.9 is actually equivalent to assuming that selection bias is constant
over time. This is what this very simple lemma shows:

Lemma 4.3 (Parallel Trends is Constant Selection Bias). Assumption 4.9 is
equivalent to assuming that selection bias is constant over time:

E[Y 0
i,A|Di = 1]− E[Y 0

i,A|Di = 0] = E[Y 0
i,B |Di = 1]− E[Y 0

i,B |Di = 0].

Proof. The proof follows immediately by adding E[Y 0
i,B |Di = 1]−E[Y 0

i,A|Di = 0]
to both sides of the equation in Assumption 4.9.

Under these assumptions, we are ready to state the main identification result of
this section:

Theorem 4.4 (DID identifies TT). Under Assumptions 4.7, 4.8 and 4.9, the
DID estimator identifies the average effect of the Treatment on the Treated after
the treatment:

∆Y
DID = ∆YA

TT ,

with:

∆Y
DID = E[Yi,A|Di = 1]− E[Yi,B |Di = 1]− (E[Yi,A|Di = 0]− E[Yi,B |Di = 0]),
∆YA
TT = E[Y 1

i,A − Y 0
i,A|Di = 1].
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Proof.

∆Y
DID = E[Yi,A|Di = 1]− E[Yi,B |Di = 1]− (E[Yi,A|Di = 0]− E[Yi,B |Di = 0])

= E[Y 1
i,A|Di = 1]− E[Y 0

i,B |Di = 1]− (E[Y 0
i,A|Di = 0]− E[Y 0

i,B |Di = 0])
= E[Y 1

i,A|Di = 1]−
(
E[Y 0

i,A|Di = 0] + (E[Y 0
i,B |Di = 1]− E[Y 0

i,B |Di = 0])
)

where the second equality follows from Assumptions 4.7 and 4.8 and the switching
equation, and the third equality follows from Lemma 4.3. Under Assumption
4.9, we have:

E[Y 0
i,A|Di = 1] = E[Y 0

i,A|Di = 0] + (E[Y 0
i,B |Di = 1]− E[Y 0

i,B |Di = 0])

As a consequence, we have:

∆Y
DID = E[Y 1

i,A|Di = 1]− E[Y 0
i,A|Di = 1]

= E[Y 1
i,A − Y 0

i,A|Di = 1]
= ∆YA

TT .

Example 4.14. How does the DID estimator behave in our example?

The Before/After comparison among the participants is equal to ∆̂y
BA|D=1 =

0.252. The Before/After comparison among the non-participants is equal to
∆̂y
BA|D=0 = 0.046. The DID estimator is thus equal to ∆̂y

DID = ∆̂y
BA|D=1 −

∆̂y
BA|D=0 = 0.252 − 0.046 = 0.206. It is also equal to the difference between the

before and after With/Without estimators. The Before With/Without estimator
is equal to ∆̂yB

WW = -1.361. The After With/Without estimator is equal to
∆̂y
WW = -1.154. The DID estimator is thus equal to ∆̂y

DID = ∆̂y
WW − ∆̂yB

WW =
-1.154 −( -1.361 ) = 0.206. This is not too far from the true effect of the
treatment in the sample which is equal to ∆̂y

TT = 0.165.

Now, another very important question is whether the DID estimator is consistent,
that is whether it is equal to ∆y

TT in our model. A necessary and sufficient
condition for that is for the Parallel Trends Assumption 4.9 to hold. Indeed, it
can be shown that the bias of the DID estimator is ∆y

B(DID) = ∆y
DID −∆y

TT =
E[y0

i |Di = 1] − E[yBi |Di = 1] − (E[y0
i |Di = 0] − E[yBi |Di = 0]). Let us derive

∆y
B(DID) in our example. Let us compute the trend in potential outcomes among

the treated:
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E[y0
i,A|Di = 1]− E[y0

i,B |Di = 1]
= E[y0

i |Di = 1]− E[yBi |Di = 1]
= E[µi + δ + U0

i |Di = 1]− E[µi + UBi |Di = 1]
= E[µi|Di = 1] + δ + E[U0

i |Di = 1]
− E[µi|Di = 1]− E[UBi |Di = 1]

= δ + E[ρUBi + εi|Di = 1]− E[UBi |Di = 1]
= δ − (1− ρ)E[UBi |Di = 1].

Following the same line of reasoning, the trend in potential outcomes among the
untreated is:

E[y0
i |Di = 0]− E[yBi |Di = 0] = δ − (1− ρ)E[UBi |Di = 0].

As a consequence, the bias of the DID estimator in our model is:

∆y
B(DID) = −(1− ρ)(E[UBi |Di = 1]− E[UBi |Di = 0])

= −(1− ρ)(E[UBi |µi + UBi + Vi ≤ ȳ]− E[UBi |µi + UBi + Vi > ȳ])

Is this zero? The answer actually is that it is not. In order to see why, notice intu-
itively that the conditional expectation of UBi is taken conditional on something
correlated with UBi being above or below some threshold. As a consequence,
the two values whose difference is taken in the parenthesis cannot be equal.
More formally, let us derive the formula for the bias of the DID estimator in our
model, using the formula for the expectation of a truncated bivariate normal
distribution:

∆y
B(DID) = −(1− ρ)(E[UBi |µi + UBi + Vi ≤ ȳ]− E[UBi |µi + UBi + Vi > ȳ])

= (1− ρ)
(

σ2
U

(1 + γ2)σ2
µ + σ2

U + σ2
ω

) φ
(

ȳ−µ̄
(1+γ2)σ2

µ+σ2
U

+σ2
ω

)
Φ
(

ȳ−µ̄
(1+γ2)σ2

µ+σ2
U

+σ2
ω

) +
φ
(

ȳ−µ̄
(1+γ2)σ2

µ+σ2
U

+σ2
ω

)
1− Φ

(
ȳ−µ̄

(1+γ2)σ2
µ+σ2

U
+σ2

ω

)


In order to compute the value of this parameter, and of the average treatment
effect, we are going to use the package tmtvnorm which provides the moments
from a truncated multivariate normal variable. Here, we use the distribution of
(αi, UBi , µi + UBi + Vi) which is normal with mean (ᾱ+ θµ̄, 0, µ̄) and covariance
matrix D with:
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D =

 θ2σ2
µ + σ2

η 0 (θ + γθ)σ2
µ + ρη,ωσησω

0 σ2
U σ2

U

(θ + γθ)σ2
µ + ρη,ωσησω σ2

U (1 + γ2)σ2
µ + σ2

U + σ2
ω


mean.alpha.UB.yBV <- c(param['baralpha']+param['barmu']*param['theta'],0,param['barmu'])
cov.alpha.UB.yBV <- matrix(c(param['theta']ˆ2*param['sigma2mu']+param['sigma2eta'],

0,
(param['theta']+param['gamma']*param['theta'])*param['sigma2mu']+param['rhoetaomega']*param['sigma2eta']*param['sigma2omega'],
0,
param['sigma2U'],
param['sigma2U'],
(param['theta']+param['gamma']*param['theta'])*param['sigma2mu']+param['rhoetaomega']*param['sigma2eta']*param['sigma2omega'],
param['sigma2U'],
(1+param['gamma']ˆ2)*param['sigma2mu']+param['sigma2U']+param['sigma2omega']),3,3,byrow=TRUE)

# cuts
#non participants
lower.cut.D0 <- c(-Inf,-Inf,log(param['barY']))
upper.cut.D0 <- c(Inf,Inf,Inf)
# participants
lower.cut.D1 <- c(-Inf,-Inf,-Inf)
upper.cut.D1 <- c(Inf,Inf,log(param['barY']))

# means
TT.pop <- mtmvnorm(mean=mean.alpha.UB.yBV,sigma=cov.alpha.UB.yBV,lower=lower.cut.D1,upper=upper.cut.D1,doComputeVariance=FALSE)[[1]][[1]]
mean.UB.D0 <- mtmvnorm(mean=mean.alpha.UB.yBV,sigma=cov.alpha.UB.yBV,lower=lower.cut.D0,upper=upper.cut.D0,doComputeVariance=FALSE)[[1]][[2]]
mean.UB.D1 <- mtmvnorm(mean=mean.alpha.UB.yBV,sigma=cov.alpha.UB.yBV,lower=lower.cut.D1,upper=upper.cut.D1,doComputeVariance=FALSE)[[1]][[2]]
B.DID <- -(1-param['rho'])*(mean.UB.D1-mean.UB.D0)

In our example, the population TT is equal to ∆y
TT = 0.173. The DID estimator

is equal to ∆y
DID = 0.211. As a consequence, the bias of the DID estimator is

equal to ∆y
B(DID) = 0.046.

In order to make the DID estimator consistent for the TT parameter, we need
to impose that ρ = 1. When shocks are permanent, their bias remains constant
over time and thus DID can estimate it without error. Let us generate new data
that are compatible with that assumption.
set.seed(1234)
N <-1000
param["rho"] <- 1
cov.eta.omega <- matrix(c(param["sigma2eta"],param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["sigma2omega"]),ncol=2,nrow=2)
eta.omega <- as.data.frame(mvrnorm(N,c(0,0),cov.eta.omega))
colnames(eta.omega) <- c('eta','omega')
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
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UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
V <- param["gamma"]*(mu-param["barmu"])+eta.omega$omega
Ds[yB+V<=log(param["barY"])] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta.omega$eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)

Let’s see how DID works on this data.

7.0

7.5

8.0

Before After
Period

O
ut

co
m

e

Group

Untreated

Treated

Treated counterfactual

Treated DID

Figure 4.6: Evolution of average outcomes in the treated and control group when
the Parallel Trends Assumption holds

Now, the counterfactual change in outcome for the treated and its approximation
using the trend experienced by the untreated are extremely close, as the curves
Treated counterfactual and Treated DID show on Figure 4.6.

4.3.1.2 Estimation

Estimation of TT under the DID assumptions can be performed in a variety
of ways: using directly the DID formula, using OLS with group fixed effects,
using OLS with individual and time dummy variables, using first differences and
using the within transformation (also known as the Two-Way Fixed Effects or
TWFE estimator). With only two periods of data and a fully balanced panel,
all of these estimators are actually numerically equivalent. Let’s examine them
in turn.
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4.3.1.2.1 Using the DID formula One could go directly and use the DID
formula of Theorem 4.4. The sample DID estimator is thus equal to:

∆̂Y
DID =

∑N
i=1 Yi,ADi∑N
i=1Di

−
∑N
i=1 Yi,BDi∑N
i=1Di

−

(∑N
i=1 Yi,A(1−Di)∑N
i=1(1−Di)

−
∑N
i=1 Yi,B(1−Di)∑N
i=1(1−Di)

)
.

Example 4.15. In our example, let’s see how this estimator works.

The Before/After comparison among the participants is equal to ∆̂y
BA|D=1 =

0.218. The Before/After comparison among the non-participants is equal to
∆̂y
BA|D=0 = 0.057. The DID estimator is thus equal to ∆̂y

DID = ∆̂y
BA|D=1 −

∆̂y
BA|D=0 = 0.218 − 0.057 = 0.161. It is also equal to the difference between the

before and after With/Without estimators. The Before With/Without estimator
is equal to ∆̂yB

WW = -1.361. The After With/Without estimator is equal to
∆̂y
WW = -1.2. The DID estimator is thus equal to ∆̂y

DID = ∆̂y
WW − ∆̂yB

WW = -1.2
−( -1.361 ) = 0.161. This is not too far from the true effect of the treatment in
the sample which is equal to ∆̂y

TT = 0.165. In the population, the TT parameter
has not changed, since its computation does not involve ρ. We still have ∆y

TT =
0.173.

4.3.1.2.2 Using the Least Squares pooling DID estimator The most
basic regression-based way to implement DID is to run a linear regression of
outcomes on a treatment group dummy, a time dummy and their interaction.
The interaction captures the effect of the treatment estimated using DID. The
way it works is as follows: estimate the following equation using OLS and use
β̂OLS as your DID estimate: β̂OLS = ∆̂Y

DID.

Yi = α+ µDi + δTi + βDiTi + εi.

Di is our usual treatment indicator while Ti takes value one when observation i
is observed in the After and zero otherwise.

Example 4.16. Let’s see how this works in our example.

Before estimating the model, we need to build a data frame with all the necessary
variables.
# building a data frame
data.DID <- as.data.frame(cbind(c(y,yB),c(Ds,Ds),c(rep(1,N),rep(0,N))))
colnames(data.DID) <- c('y','D','T')

# running the OLS regression
reg.DID <- lm(y ~ D + T + D*T,data = data.DID)

# coefficients
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yB.D0.reg <- coef(reg.DID)[[1]]
WW.before.reg <- coef(reg.DID)[[2]]
BA.untreated.reg <- coef(reg.DID)[[3]]
DID.est.reg <- coef(reg.DID)[[4]]

# comparisons
yB.D0.sample <- mean(yB[Ds==0])

The estimate of β̂OLS in our sample is equal to 0.161. It is exactly equal to
∆̂y
DID as estimated just above. What is interesting with the regression-based

DID approach is that the other coefficients in the regression have a direct
interpretation. For example, the constant α estimates the mean outcome in
the untreated group before the treatment. In our case, we have α̂OLS = 8.36.
Remember that in our sample, the average outcomes of the untreated before the
treatment is equal to Ê[yBi |Di = 0] = 8.36. µ, the coefficient in front of the Di

dummy, estimates the With/Without estimator before the treatment. In our
case, we have µ̂OLS = -1.361. Remember that in our sample, the With/Without
estimator before the treatment is equal to ∆̂yB

WW = -1.361. δ, the coefficient in
front of the Ti dummy, estimates the Before/After change in outcomes among
the untreated. In our case, we have δ̂OLS = 0.057. Remember that in our sample,
the Before/After estimator among the untreated is equal to ∆̂y

BA|D=0 = 0.057.

Remark. A pretty cool property of the regression-based DID estimator is that
is does not require panel data. It works even with repeated cross sections, i.e.
when observations are drawn from the same population in both periods but are
not the same.

4.3.1.2.3 Using First Differences In the presence of panel data, an alter-
native to the regression-based DID estimator is the first-difference estimator. It
simply regresses the change over time in outcomes on the treatment dummy:

Yi,A − Yi,B = αFD + βFDDi + εFDi .

The coefficient βFD estimated by OLS is an estimate of the DID parameter.

Example 4.17. Let’s see how this works in our example.

Before running the model, we need to generate first the differenced estimates.
One very simple way to do that is simply to take the difference between the
before and the after outcome vectors.
# building a data frame
data.FD <- as.data.frame(cbind(y-yB,Ds))
colnames(data.FD) <- c('BAy','D')

# running the OLS regression
reg.FD <- lm(BAy ~ D,data = data.FD)
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# coefficients
BA.untreated.FD <- coef(reg.FD)[[1]]
DID.est.FD <- coef(reg.FD)[[2]]

The estimate of β̂FDOLS in our sample is equal to 0.161. It is exactly equal to
∆̂y
DID as estimated just above. Note also that αFD estimates the Before/After

change in outcomes among the untreated. In our case, we have α̂FDOLS = 0.057.
Remember that in our sample, the Before/After estimator among the untreated
is equal to ∆̂y

BA|D=0 = 0.057.

4.3.1.2.4 Using the Least Squares Dummy Variables estimator One
very computer-intensive way to estimate TT in a DID setting is to use the OLS
estimator supplemented with dummies for each observation and for each time
period, also called the Least-Squares Dummy Variables estimator. In practice,
the estimator is based on the following regression:

Yi,t =
N∑
j=1

µj1[j = i] +
1∑
l=0

δl1[l = t] + βLSDVDi,t + εLSDVi,t .

The notation is generally simplified as follows:

Yi,t = µi + δt + βTWFEDi,t + εTWFE
i,t ,

This last estimator is generally called the Two-Way Fixed Effects estimator, since
it has two-sets of so-called fixed effects (individual fixed effects, µi, and time
fixed effects δt). I will write it using this second, more compact, formulation, but
I think the first formulation encapsulates better how the Least-Squares Dummy
Variables estimator works. In what follows, we will see other ways of estimating
the Two-Way Fixed Effects model, but for now, let us focus on the Least-Squares
Dummy Variables estimator. The way it works is simply by throwing a bunch of
dummy variables in the regression.

Example 4.18. Let’s see how the Least Squares Dummy Variable works in our
example. For that, we need to generate one dummy variable for each individual
i in our sample. This is made simple by the factor function in R. We are also
going to run the model without a constant, so that all the fixed effects are
identified.
# adding one column to the DID data frame with the individual index for each observation of the same $i$
data.DID$indiv <- as.factor(c(1:N,1:N))
# generating Dit (time varying)
data.DID$Dit <- data.DID$D*data.DID$T
# running the LSDV estimator
reg.LSDV <- lm(y~-1 + Dit + as.factor(T) + indiv,data=data.DID)
# result
DID.est.LSDV <- coef(reg.LSDV)[[1]]
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The Least-Squares Dummy Variables estimate of TT is equal to: β̂LSDV =
0.161.

Remark. The term fixed effect is specific to the panel data literature in econo-
metrics. It refers to the fact that both µi and δt are allowed to be correlated
with Di,t in this model. This is in contrast to the random effects model where
µi and δt are assumed to be independent of the regressors of interest.

4.3.1.2.5 Using the Within estimator You might have noticed that the
Least-Squares Dummy Variables estimator took some time to compute on your
computer. This is because it requires the inversion of a very large matrix, as
large as the number of fixed effects plus one. The size of this computation
increases as the number of observation and time periods increases, meaning that
this computation might become practically unfeasible in very large datasets.
Several tricks have been developed to decrease the computational burden of the
estimation of the Two-Way Fixed Effects model. One approach is to use the
First Difference estimator. Another approach is the Within estimator. The way
the Within estimator works is by taking the difference between each observation
and its mean over time or over individuals. More precisely, the Within estimator
estimates the following model by OLS:

Yi,t −
1
2

1∑
t=0

Yi,t = δWt + βW (Di,t −
1
2

1∑
t=0

Di,t) + εWi,t .

The reason why this trick works is because of the shape of the Two-Way Fixed
Effects model. Indeed, taking the average of the Two-Way Fixed Effects model
over time gives:

1
2

1∑
t=0

Yi,t = µi + 1
2

1∑
t=0

δt + βTWFE 1
2

1∑
t=0

Di,t + 1
2

1∑
t=0

εTWFE
i,t .

Taking the difference between the Two-Way Fixed Effects model and its time-
averaged version gives the Within estimator. The key is that the differencing gets
rid of the individual fixed effects parameter µi and thus makes it unnecessary to
estimate it. The set of parameters to estimate is thus much smaller than in the
Least-Squares Dummy Variables estimator.

Example 4.19. Let’s see how the Within estimator works in our example. For
that, we need to compute the average over time of the outcome and of the
treatment for each observation in our dataset. This is made simple by the
summarize function of the dplyr package.
# generating the time means of Y and Dit
TimeMeansYDit <- data.DID %>%

group_by(indiv) %>%
summarize(

TimeMeanY = mean(y),
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TimeMeanDit = mean(Dit)
)

# doubling the observations to be able to take the difference in both periods
TimeMeansYDit <- rbind(TimeMeansYDit,TimeMeansYDit)
# taking the difference in both periods
data.DID$W.y <- data.DID$y-TimeMeansYDit$TimeMeanY
data.DID$W.Dit <- data.DID$Dit-TimeMeansYDit$TimeMeanDit
# running the within estimator
reg.W <- lm(W.y~-1 + W.Dit + as.factor(T),data=data.DID)
# result
DID.est.W <- coef(reg.W)[[1]]

The Within estimate of TT is equal to: β̂W = 0.161.

The plm package directly implements the Within transformation. The same
package also estimates the First Difference model and the Least Squares pooling
DID estimator. Let’s see how this works.
# running the within estimator
reg.W.plm <- plm(y ~ Dit + as.factor(T) , data = data.DID, index= c("indiv", "T"), model = "within")
# result
DID.est.W.plm <- coef(reg.W.plm)[[1]]

# running the first difference estimator
reg.FD.plm <- plm(y ~ Dit + as.factor(T) , data = data.DID, index= c("indiv", "T"), model = "fd")
# result
DID.est.FD.plm <- coef(reg.FD.plm)[[2]]

# running the OLS pooling DID estimator
reg.OLS.plm <- plm(y ~ as.factor(T) + D + Dit , data = data.DID, index= c("indiv", "T"), model = "pooling")
# result
DID.est.OLS.plm <- coef(reg.OLS.plm)[[4]]

As expected, plm gives the following estimates for TT : β̂W = 0.161, β̂FD =
0.161 and β̂OLS = 0.161.

4.3.1.2.6 Using fast estimators of the Two-Way Fixed Effects model
All the estimators of the TWFE model that we have seen so far have issues. The
OLS pooling DID estimator does not account for the panel structure of the data
when it exists. It does not alter the precision of the estimator but it makes it
mode difficult to account for more dimensions of fixed effects than two. The
First Difference estimator, similarly, cannot easily account for more than two
sets of fixed effects. The Least Squares Dummy variable is slow because of the
very large matrix inversion problem. Therefore, applied econometricians tend
to prefer using the Within estimator in practice. The Within estimtor of the
Two-Way Fixed Effects model is not without problems as well. As the sample
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size grows large, or the number of fixed effects increases, it becomes more and
more difficult to compute the within transformation. As a consequence, recent
packages have proposed to optimize the computation of the TWFE model using
various computational tricks. Let’s examine two in turn.

4.3.1.2.6.1 The Alternating Projections method The lfe package in
R implements an alternating projections method to estimate the N -Way Fixed
effects model. It is based on an algorithm proposed by Gaure (2013). The basic
idea of Gaure (2013) is to repeat centering on the means of the fixed effects (the
within operation) in an alternating manner between the various fixed effects
dimensions until convergence.

Example 4.20. Let’s see how the lfe estimator works in our example.
# running the within estimator
reg.W.lfe <- felm(y ~ Dit + as.factor(T) | indiv , data = data.DID)
# result
DID.est.W.lfe <- coef(reg.W.lfe)[[1]]

As expected, lfe gives the following estimate for TT : β̂AP = 0.161.

4.3.1.2.6.2 The Likelihood Concentration method One problem with
the lfe package is that it works only for linear models. The fixest package in R
proposes a solution for estimating fixed effects models in non-linear cases as well.
The solution is based on the concentrated likelihood as explained in Berge (2018).
The intuition is as follows. We first postulate a value for the treatment effect and
the coefficient on the time dummies and we estimate each of the individual fixed
effects using maximum likelihood. We then use maximum likelihood to find the
treatment effect using the values of the fixed effects estimated in the previous
step. This seems complicated but the key idea is to separate the estimation of
the fixed effects from the estimation of the parameters of interest.

Example 4.21. Let’s see how the fixest estimator works in our example.
# running the within estimator
reg.W.fixest <- feols(y ~ Dit + as.factor(T) | indiv , data = data.DID)
# result
DID.est.W.fixest <- coef(reg.W.fixest)[[1]]

As expected, fixest gives the following estimate for TT : β̂LC = 0.161.

4.3.1.2.7 Equivalence between the various DID methods with two
time periods The above results suggest that all DID estimators are equivalent
when working with two time periods. The following theorem actually states this
result rigorously:

Theorem 4.5 (All DID estimators are numerically equivalent with two time
periods). Under Assumptions 4.7, 4.8 and 4.9, in a panel with only two periods

https://doi.org/10.1016/j.csda.2013.03.024
https://www.econstor.eu/bitstream/10419/47280/1/637363027.pdf
https://cran.r-project.org/web/packages/fixest/vignettes/fixest_walkthrough.html
https://wwwen.uni.lu/content/download/110162/1299525/file/2018_13
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of data, all the DID estimators are numerically equivalent: β̂OLS = β̂FD =
β̂W = β̂LSDV = β̂AP = β̂LC = ∆̂Y

DID.

Proof. See Section A.3.1.

A corollary to Theorem 4.5 shows that the coefficients in the Least Squares
Pooling DID estimator all estimate some relevant parameters that help make
sense of the DID estimator:

Corollary 4.2 (Coefficients in the OLS DID model). Under Assumptions 4.7,
4.8 and 4.9, in a panel with only two periods of data, the coefficients of the Least
Squares pooling DID estimator are:

α̂OLS = Ȳ 0
B

µ̂OLS = Ȳ 1
B − Ȳ 0

B

δ̂OLS = Ȳ 0
A − Ȳ 0

B

β̂OLS = Ȳ 1
A − Ȳ 1

B − (Ȳ 0
A − Ȳ 0

B),

with Ȳ dt =
∑N

i=1
Yi,t1[Di=d]∑N

i=1
1[Di=d]

.

Proof. See Section A.3.1, the proof for the OLS DID estimator.

Corollary 4.2 shows that the constant in the OLS DID model α̂OLS estimates
the average outcome for the untreated group in the period before the treatment
date; the coefficient on the group dummy Di µ̂

OLS estimates the difference
between the average outcome for the treated group and the average outcome in
the untreated group in the period before the treatment takes place; the coefficient
on the time dummy Ti δ̂OLS estimates the difference in average outcomes in the
untreated group before and after the treatment takes place. These coefficients
are useful to udenrstand how the DID estimator is formed. They can also be
used to plot the trajectory of the mean outcomes in each group over time to
make a visual impression of how DID works.

Finally, let’s see how our estimator varies across sampling replications. A key
difference is whether we have access to panel data or not. Indeed, estimates
from a repeated cross section are going to be more noisy since they are going
to sample different people in different periods and thus are going to be affected
by sampling noise stemming from the fixed effects. This is not going to be the
case with panel data, since all the estimators based on the TWFE estimator
differentiate out the individual fixed effects.

Example 4.22. Let’s first start with the case of panel data:
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# let us write a function that generates a DID estimate out of each sample of a given size
monte.carlo.did.panel <- function(s,N,param){
set.seed(s)
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N)
Ds[YB<=param["barY"]] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)
delta.y.did <- mean(y[Ds==1])-mean(y[Ds==0])-(mean(yB[Ds==1])-mean(yB[Ds==0]))
return(delta.y.did)

}

simuls.did.panel.N <- function(N,Nsim,param){
simuls.did.panel <- matrix(unlist(lapply(1:Nsim,monte.carlo.did.panel,N=N,param=param)),nrow=Nsim,ncol=1,byrow=TRUE)
colnames(simuls.did.panel) <- c('DID')
return(simuls.did.panel)

}

sf.simuls.did.panel.N <- function(N,Nsim,param){
sfInit(parallel=TRUE,cpus=8)
sim <- matrix(unlist(sfLapply(1:Nsim,monte.carlo.did.panel,N=N,param=param)),nrow=Nsim,ncol=1,byrow=TRUE)
sfStop()
colnames(sim) <- c('DID')
return(sim)

}

Nsim <- 1000
#Nsim <- 10
N.sample <- c(100,1000,10000,100000)
#N.sample <- c(100,1000,10000)
#N.sample <- c(100,1000)
#N.sample <- c(100)

simuls.did.panel <- lapply(N.sample,sf.simuls.did.panel.N,Nsim=Nsim,param=param)
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names(simuls.did.panel) <- N.sample

Let us now plot the results of the simulations:
par(mfrow=c(2,2))
for (i in 1:length(simuls.did.panel)){
hist(simuls.did.panel[[i]][,'DID'],breaks=30,main=paste('N=',as.character(N.sample[i])),xlab=expression(hat(DeltaˆyDID)),xlim=c(-0.15,0.55))
abline(v=TT.pop,col="red")

}
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Figure 4.7: Distribution of the DID estimator over replications of panels of
different sizes

Figure 4.7 shows that the DID estimator converges pretty fast to the true
treatment effect as sample size grows large. Let us now wee what happens with
a repeated cross section:
monte.carlo.did.cross <- function(s,N,param){
N.tot <- 2*N
set.seed(s)
mu <- rnorm(N.tot,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N.tot,0,sqrt(param["sigma2U"]))
yB <- mu + UB
YB <- exp(yB)
Ds <- rep(0,N.tot)
Ds[YB<=param["barY"]] <- 1
epsilon <- rnorm(N.tot,0,sqrt(param["sigma2epsilon"]))
eta<- rnorm(N.tot,0,sqrt(param["sigma2eta"]))
U0 <- param["rho"]*UB + epsilon
y0 <- mu + U0 + param["delta"]
alpha <- param["baralpha"]+ param["theta"]*mu + eta
y1 <- y0+alpha
Y0 <- exp(y0)
Y1 <- exp(y1)
y <- y1*Ds+y0*(1-Ds)
Y <- Y1*Ds+Y0*(1-Ds)
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# first cross section: 1-N
first <- seq(1,N)
# second cross section: 1001-2000
second <- seq(N+1,N.tot)
# repeated cross section DID
delta.y.did.cross <- mean(y[second][Ds[second]==1])-mean(y[second][Ds[second]==0])-(mean(yB[first][Ds[first]==1])-mean(yB[first][Ds[first]==0]))
return(delta.y.did.cross)

}

simuls.did.cross.N <- function(N,Nsim,param){
simuls.did.cross <- matrix(unlist(lapply(1:Nsim,monte.carlo.did.cross,N=N,param=param)),nrow=Nsim,ncol=1,byrow=TRUE)
colnames(simuls.did.cross) <- c('DID')
return(simuls.did.cross)

}

sf.simuls.did.cross.N <- function(N,Nsim,param){
sfInit(parallel=TRUE,cpus=8)
sim <- matrix(unlist(sfLapply(1:Nsim,monte.carlo.did.cross,N=N,param=param)),nrow=Nsim,ncol=1,byrow=TRUE)
sfStop()
colnames(sim) <- c('DID')
return(sim)

}

Nsim <- 1000
#Nsim <- 10
N.sample <- c(100,1000,10000,100000)
#N.sample <- c(100,1000,10000)
#N.sample <- c(100,1000)
#N.sample <- c(100)

simuls.did.cross <- lapply(N.sample,sf.simuls.did.cross.N,Nsim=Nsim,param=param)
names(simuls.did.cross) <- N.sample

Let us now plot the results:
par(mfrow=c(2,2))
for (i in 1:length(simuls.did.cross)){
hist(simuls.did.cross[[i]][,'DID'],breaks=30,main=paste('N=',as.character(N.sample[i])),xlab=expression(hat(DeltaˆyDID)),xlim=c(-0.15,0.55))
abline(v=TT.pop,col="red")

}

Relative to Figure 4.7, Figure 4.8 shows that sampling noise is larger at each
sample size with a repeated cross section estimator. Let’s see how we can
estimate these below using the Central Limit Theorem.
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Figure 4.8: Distribution of the DID estimator over replications of repeated cross
sections of different sizes

4.3.1.3 Estimation of sampling noise

It is especially important to understand the properties of sampling noise for
treatment effect estimators in DID designs because it can serve as a basis for
power analysis, but also to understand the sources of improvements or loss of
precision when moving from the simple with/without comparison to the DID
estimator. Let us first look at the sampling noise of the simpler 2 × 2 DID
estimator in a panel data with only two time periods. We will then move to the
sampling noise of the simpler 2× 2 DID estimator in a repeated cross section.

4.3.1.3.1 Estimating sampling noise in panel settings When we esti-
mate DID in a panel of two time periods, Theorem 4.5 shows that all possible
DID estimators are equivalent. We can thus use the most convenient one in order
to derive the Central Limit Theorem-based approximation to its distribution,
and use it to estimate sampling noise. The most convenient estimator, to me, is
the First Difference estimator. We indeed know that it is formulated as an OLS
estimator, regressing the change in outcomes over time to the treatment dummy.
The First Difference estimator is thus simply a With/Without estimator where
the outcomes are replaced by the changes in outcomes over time. And we already
know how to derive an Central Limit Theorem-based estimate of the sampling
noise of the With/Without estimator. In order to use these results, we need
some assumptions:

Hypothesis 4.10 (i.i.d. sampling in First Difference). We assume that the
observations in the sample are identically and independently distributed in First
Differences:

∀i, j ≤ N , i 6= j, (Yi,A − Yi,B , Di) ⊥⊥ (Yj,A − Yj,B , Dj),
(Yi,A − Yi,B , Di)&(Yj,A − Yj,B , Dj) ∼ FYA−YB ,D.

Assumption 4.10 imposes that the changes in outcome over time are not correlated
across units. This is not a strong assumption. It is actually much weaker than
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imposing that the levels of outcomes are distributed i.i.d. in the sample. That
would require that the outcomes of the same unit are not correlated over time,
which is wrong if there are unit fixed effects µi or if the error terms are correlated
across time (which is possible if shocks are persistent). Assumption 4.10 rules
out spatial correlation between units, be it in the changes in outcomes or in
receiving the treatment. This is very restrictive.

We also need to assume that the changes in outcomes in both groups have finite
variances:

Hypothesis 4.11 (Finite variance of ˆ∆Y
WW ). We assume that V[Y 1

A−Y 0
B |Di = 1]

and V[Y 0
A − Y 0

B |Di = 0] are finite.

We now can state the following theorem:

Theorem 4.6 (Asymptotic Distribution of the DID Estimator in Panel Data).
Under Assumptions 4.7, 4.8, 4.9, 4.10 and 4.11, we have:

√
N(∆̂Y

DID −∆Y
DID) d→ N

(
0,

V[Y 1
i,A − Y 0

i,B |Di = 1]
Pr(Di = 1) +

V[Y 0
i,A − Y 0

i,B |Di = 0]
1− Pr(Di = 1)

)
.

Proof. Under Assumptions 4.7, 4.8, 4.9, Theorem 4.5 proves that ∆̂Y
DID = β̂FD.

β̂FD is obtained as the OLS estimator of the coefficient in front of Di in a
regression of Yi,A − Yi,B on Di and a constant. Lemma A.3 shows that, in such
a regression, this coefficient is also a WW estimator, so that β̂FD = ∆̂YA−YB

WW .
Using Theorem 2.5 proves the result.

Theorem 4.6 shows that the precision of the DID estimator in panel settings
depends on the variance of the changes in outcomes over time in the treated and
control group. Since outcomes for a given individual are generally correlated
over time, the variance of the DID estimator will in general be lower than the
variance of the WW estimator. A case in point is when there are individual fixed
effects in the equation generating outcomes: in that case, differencing outcomes
over time gets rid of the individual fixed effects and thus the variance of the
differences out outcomes is lower than the variance of outcomes in levels, since it
misses the part due to the individual fixed effects. So, in most cases (but not all
of them), we can expect an increase in precision when moving from WW to DID.

Example 4.23. Let’s see how our estimator of sampling noise performs in the
data.

The true level of 99% sampling noise in the N = 1000 sample is estimated from
the simulations to be equal to 0.12, while the estimated level of 99% sampling
noise using the formula from Theorem 4.6 is equal to 0.1. The estimated level of
99% sampling noise obtained using the heteroskedasticity robust standard errors
from the First Difference regression using OLS is equal to 0.11. The estimated
level of 99% sampling noise obtained using the heteroskedasticity robust standard
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errors from the DID regression using OLS is equal to 0.34. It is much larger,
because it assumes that we only have access to a repeated cross section, and
thus it does not take into account the fact that we have more precision thanks
to the panel data. The estimated level of 99% sampling noise obtained using
the heteroskedasticity robust standard errors from the Within regression using
OLS is equal to 0.08. The plm package corrects all standard errors for the panel
nature of the data (irrespective of the type of estimator), and thus returns an
estimate of 99% sampling noise equal to 0.11 for the Within estimator, 0.11 for
the First Difference estimator and 0.11 for the pooled DID estimator. Neither
lfe nor fixest seem compatible with vcovHC, which enables the estimation of
heteroskedasticity-robust standard errors. The lfe package seems not to take
into account heteroskedasticity by default: its estimate of 99% sampling noise is
equal to 0.1. The fixest package seems to take into account heteroskedasticity
by default: its estimate of 99% sampling noise is equal to 0.11.

4.3.1.3.2 Estimating sampling noise in repeated cross sections
When we do not have access to panel data, a lot of the estimators we have
studied here are infeasible. This is the case of the First Difference estimator
(we cannot build the difference in out comes over time for the same unit since
we observe each unit only once). The Within estimator is also compromised
(we cannot build the average outcome over time for each observation, since,
again, we only observe each observation only once). The Least Squares Dummy
Variables estimator is also infeasible, for the same reason: we need to observe
each observation at least twice in order for the treatment dummy to not be
collinear with the unit and time fixed effects.

But, both the basic DID formula and the Least Squares pooling estimator can
still be computed with repeated cross sections. As Figure 4.8 has shown, the
DID estimator is much more variable in repeated cross section: the level of 99%
sampling noise in the N = 1000 sample is estimated from the simulations to
be equal to 0.28, while it is of 0.12 with panel data of the same size. Let’s see
how the Central-Limit Theorem can help us estimate this variance and shed
some light on why we lose so much precision when moving from panel to cross
section estimators. It is unfortunately much more work to derive the CLT-based
estimate of sampling noise with repeated cross-sections than with panel data.
We first need to respecify an i.i.d. assumption adapted to repeated cross sections:

Hypothesis 4.12 (i.i.d. sampling in Repeated Cross Sections). We assume that
the observations in the sample are identically and independently distributed:

∀i, j ≤ Nt, i 6= j, ,∀t, t′ ∈ {A,B}, t 6= t′, (Yi,t, Di) ⊥⊥ (Yj,t′ , Dj),
(Yi,t, Di)&(Yj,t′ , Dj) ∼ FY,D.

Assumption 4.12 imposes that outcomes are not correlated across units nor
across time. This is not a strong assumption in a repeated cross section, as
long as the same units are not observed at both periods. We now can state the
following theorem:
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Theorem 4.7 (Asymptotic Distribution of the DID Estimator in Repeated
Cross Sections). Under Assumptions 4.7, 4.8, 4.9, 4.12 and 2.3, we have:

√
N(∆̂Y

DID −∆Y
DID) d→ N

(
0,

V[Y 0
i,B |Di = 0]

(1− p)(1− pA) +
V[Y 0

i,B |Di = 1]
p(1− pA)

+
V[Y 0

i,A|Di = 0]
(1− p)pA

+
V[Y 1

i,A|Di = 1]
ppA

)
.

where p = Pr(Di = 1) and pA is the proportion of observations belonging to the
After period.

Proof. See Section A.3.2.

Remark. Note that the difference between the amount of sampling noise of the
DID estimator in panel data vs in repeated cross sections is present whatever the
estimator (in panel data, all the estimators are equivalent). It is not differencing
or taking the within transformation that gets rid of sampling noise, it is collecting
data on the same observations twice. Differencing only helps the OLS estimator
of the standard errors to understand that we have panel data and to reflect it
in its estimate of precision. The DID estimator is always more precise in panel
data (in our example). The CLT-based estimator of precision does not always
reflect that fact, because we have not correctly specified it.

Example 4.24. Let’s see how our estimator of sampling noise performs in the
data.

The true level of 99% sampling noise in the N = 1000 sample is estimated from
the simulations to be equal to 0.28, while the estimated level of 99% sampling
noise using the formula from Theorem 4.7 is equal to 0.34. The estimated level
of 99% sampling noise obtained using the heteroskedasticity robust standard
errors from the DID regression using OLS is equal to 0.34.

4.3.2 Reverse Difference In Differences designs with two
time periods

Before getting into the general case of DID with several time periods and several
treatment dates, it is useful to quickly look at identification in the case of reverse
DID designs. We are going to look at two such designs. In the first type, some
units are exposed to the treatment in the first period and the rest of the units
enter the treatment in the second period. In the second type of reverse DID
design, all units receive the treatment in the first period and some units exit the
treatment in the second period.
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4.3.2.1 Reverse DID designs where everyone enters the treatment
at the second period

Compared to the setting in the previous section, the main change is to Assumption
4.7:

Hypothesis 4.13 (Everyone Receives Treatment in the Second Period). We
assume that every unit in the population receives the treatment in the second
period: Di,A = 1, ∀i.

Under Assumption 4.13, and without loss of generality, we can write Di = Di,B ,
∀i. We are going to call the units which stay in the treatment during the two
periods always takers and the units who enter the treatment in the second period
switchers. Always takers are defined by Di = 1 while switchers are defined by
Di = 0.

In this new setting, we have to redefine the DID estimator. We are going to
choose an estimator that compares the change in outcomes among individuals
who have changed treatment status (switchers) to the change in outcome among
individuals who have not changed treatment status (always takers):

∆Y
DIDr = E[Yi,A|Di = 0]− E[Yi,B |Di = 0]− (E[Yi,A|Di = 1]− E[Yi,B |Di = 1]).

Note that ∆Y
DIDr is the opposite of the more usual DID estimator ∆Y

DID, hence
the name of reverse DID.

Example 4.25. Let us generate data in our example model that complies with
Assumption 4.13.

y1
i,A = y0

i,A + ᾱA + ᾱATDi,B + θAµi + ηi,A

y0
i,A = µi + δ + U0

i,A

U0
i,A = ρUi,B + εi,A

y1
i,B = y0

i,B + ᾱB + θBµi + ηi,B

y0
i,B = µi + Ui,B

Ui,B ∼ N (0, σ2
U )

Di,B = 1[y0
i,B + Vi ≤ ȳ]

Vi = γ(µi − µ̄) + ωi

(ηi,A, ηi,B , ωi) ∼ N (0, 0, 0, σ2
η, σ

2
η, σ

2
ω, 0, ρη,ω)

Note that in this model we first have imposed that some people enter the
treatment in the first period (period B). We also have added other important
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features, such as the fact that the effect of the treatment varies over time.
The most important component of this variation is the constant parameter ᾱ
which now differs from period to period (ᾱA 6= ᾱB). The treatment effect also
varies over group and over time, with the always treated group (characterized by
Di,B = 1) having an additional increase in treatment effects of ᾱAT in period A.
Let’s encode new parameter values.
param <- c(8,.5,.28,1500,0.9,0.01,0.01,0.05,0.05,0.05,0.2,0.1,0.3,0.1,0.28,0)
names(param) <- c("barmu","sigma2mu","sigma2U","barY","rho","thetaA","thetaB","sigma2epsilon","sigma2eta","delta","baralphaA","baralphaB","baralphaAT","gamma","sigma2omega","rhoetaomega")

Let’s now simulate a dataset according to these new equations.
set.seed(1234)
N <- 1000
cov.eta.omega <- matrix(c(param["sigma2eta"],0,param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),

0,param["sigma2eta"],param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),
param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["sigma2omega"]),ncol=3,nrow=3,byrow=T)

eta.omega <- as.data.frame(mvrnorm(N,c(0,0,0),cov.eta.omega))
colnames(eta.omega) <- c('etaA','etaB','omega')
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
y0B <- mu + UB
Y0B <- exp(y0B)
Ds <- rep(0,N)
V <- param["gamma"]*(mu-param["barmu"])+eta.omega$omega
Ds[y0B+V<=log(param["barY"])] <- 1
alphaB <- param["baralphaB"]+ param["thetaB"]*mu + eta.omega$etaB
y1B <- y0B+alphaB
Y1B <- exp(y1B)
epsilonA <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
U0A <- param["rho"]*UB + epsilonA
y0A <- mu + U0A + param["delta"]
alphaA <- param["baralphaA"]+ param["baralphaAT"]*Ds+ param["thetaA"]*mu + eta.omega$etaA
y1A <- y0A+alphaA
Y0A <- exp(y0A)
Y1A <- exp(y1A)
yB <- y1B*Ds+y0B*(1-Ds)
YB <- Y1B*Ds+Y0B*(1-Ds)
yA <- y1A
YA <- Y1A

Let’s see how DID works on this data.
x <- c("Before","After")
y.AT <- c(mean(yB[Ds==1]),mean(yA[Ds==1]))
y.AT.counterfactual <- c(mean(y0B[Ds==1]),mean(y0A[Ds==1]))
y.Switchers <- c(mean(yB[Ds==0]),mean(yA[Ds==0]))
y.Switchers.counterfactual <- c(mean(y0B[Ds==0]),mean(y0A[Ds==0]))
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y.Switchers.counterfactual.1 <- c(mean(y1B[Ds==0]),mean(y1A[Ds==0]))
y.Switchers.DID <- c(mean(yB[Ds==0]),mean(yB[Ds==0])+mean(yA[Ds==1])-mean(yB[Ds==1]))
y.Switchers.DID.1 <- c(mean(yA[Ds==0])-(mean(yA[Ds==1])-mean(yB[Ds==1])),mean(yA[Ds==0]))
data.DID.plot <- as.data.frame(c(y.AT,y.AT.counterfactual,y.Switchers,y.Switchers.counterfactual,y.Switchers.counterfactual.1,y.Switchers.DID,y.Switchers.DID.1))
colnames(data.DID.plot) <- c("Outcome")
data.DID.plot$Period <- factor(rep(x,7),levels=c("Before","After"))
data.DID.plot$Group <- factor(c("Always Treated","Always Treated","Always Treated counterfactual y0","Always Treated counterfactual y0","Switchers","Switchers","Switchers counterfactual y0","Switchers counterfactual y0","Switchers counterfactual y1","Switchers counterfactual y1","Switchers DIDr","Switchers DIDr","Switchers DIDr1","Switchers DIDr1"),levels=c("Switchers","Switchers counterfactual y1","Switchers counterfactual y0","Switchers DIDr","Switchers DIDr1","Always Treated","Always Treated counterfactual y0"))
data.DID.plot$Observed <- factor(c("Observed","Observed","Unobserved","Unobserved","Observed","Observed","Unobserved","Unobserved","Unobserved","Unobserved","Generated","Generated","Generated","Generated"),levels=c("Observed","Unobserved","Generated"))

WW.before <- (mean(yB[Ds==0])-mean(yB[Ds==1]))
WW.after <- (mean(yA[Ds==0])-mean(yA[Ds==1]))
BA.AT <- mean(yA[Ds==1])-mean(yB[Ds==1])
BA.Switchers <- mean(yA[Ds==0])-mean(yB[Ds==0])
Counterfactual.after <- mean(yB[Ds==0])+BA.AT
DIDr <- BA.Switchers - BA.AT
TTASwitchers <- mean(alphaA[Ds==0])
TTBSwitchers <- mean(alphaB[Ds==0])
TTAAT <- mean(alphaA[Ds==1])
TTBAT <- mean(alphaB[Ds==1])

ggplot(data.DID.plot,aes(x=Period,y=Outcome,group=Group,color=Group,shape=Group,linetype=Observed))+
geom_line() +
geom_point()+
scale_linetype_discrete(guide='none') +
theme_bw()
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Figure 4.9: Evolution of average outcomes in the always treated and switchers
group in the reverse DID design where everyone is treated in the second period

Figure 4.9 shows that DID does not work well in this example. Indeed, the
true treatment effect among switchers after the treatment is equal to 0.3 in
the sample, while the DID estimator is equal to -0.11. The DIDr estimator
is of the wrong sign. Why is that? Note that the DIDr estimator uses the
change in outcomes among the always treated to approximate the change in
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outcome that would have occurred for the switchers if they have stayed outside
of the treatment. The problem is that this approximation does not work at
all: the increases in outcome for the always treated is much steeper than the
increase in outcomes that would have happened to the switchers had they stayed
outside of the treatment (0.44 > 0.33). As a consequence, the DIDr estimator
overestimates the counterfactual level that would have been reached by the
switchers in the second period in the absence of the treatment. Ultimately, the
DIDr estimator underestimates severely the effect of the treatment. Note that
the usual assumption of parallel trends does hold in this example. The problem
comes form somewhere else. One way to understand the problems with the
DIDr estimator is to see that the change in treatment effects over time and
between groups over time confounds the effect of the treatment. The only way
to make the DIDr estimator work is to assume these confounders away.

In order to clarify the conditions under which the DIDr estimator is valid, let
us state the following assumption:

Hypothesis 4.14 (Parallel Trends in the presence of the treatment). We assume
that the trends in the potential outcomes in the presence the treatment are the
same for the treated and the untreated units:

E[Y 1
i,A|Di = 1]− E[Y 1

i,B |Di = 1] = E[Y 1
i,A|Di = 0]− E[Y 1

i,B |Di = 0].

Under Assumption 4.14, we can show that the DIDr estimator identifies the
effect of the treatment on the switchers in the first period:

Theorem 4.8 (DIDr identifies TUT in the first period). Under Assumptions 4.7,
4.8 and 4.14, the DIDr estimator identifies the average effect of the Treatment
on the switchers before the treatment:

∆Y
DIDr = ∆YB

TUT ,

with:

∆YB
TUT = E[Y 1

i,B − Y 0
i,B |Di = 0].

Proof.

∆Y
DIDr = E[Yi,A|Di = 0]− E[Yi,B |Di = 0]− (E[Yi,A|Di = 1]− E[Yi,B |Di = 1])

= E[Y 1
i,A|Di = 0]− E[Y 0

i,B |Di = 0]− (E[Y 1
i,A|Di = 1]− E[Y 1

i,B |Di = 1])
= E[Y 1

i,A|Di = 0]− E[Y 0
i,B |Di = 0]− (E[Y 1

i,A|Di = 0]− E[Y 1
i,B |Di = 0])

= E[Y 1
i,B − Y 0

i,B |Di = 0]
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where the second equality follows from Assumptions 4.7 and 4.8 and the switching
equation, and the third equality follows from Assumption 4.14.

Theorem 4.8 shows that under an alternative assumption of parallel trends (that
they hold for potential outcomes when units are in the treatment), the DIDr

estimator identifies the causal effect of the treatment on the switchers before
the treatment takes place.

Remark. Note that it makes intuitive sense: the only true change is that of
the switchers entering the treatment. Using the always takers, we can only
learn about the changes in potential outcomes when in the treatment. Under
Assumption 4.14, the switchers would have experimented the same change in
outcomes than the always takers if they have been constantly treated. As a
consequence, we can use the change in outcomes among the always takers to
project back what would have been the outcomes of the switchers in the first
period had they been exposed to the treatment.

Remark. Note as well that Assumption 4.14, when paired with Assumption 4.9,
is actually restrictive in terms of how the treatment effects might change over
time and between groups, as the following lemma shows:

Lemma 4.4 (Parallel Trends Restricts the Way Treatment Effects Change
Over Time). Assumptions 4.9 and 4.14 imply that always takers and switchers
experience the same changes in treatment effects over time:

∆YA
TUT −∆YB

TUT = ∆YA
TT −∆YB

TT .

Proof. Substracting the parallel trends condition in Assumption 4.9 from the
parallel trends condition in Assumption 4.14, we have:

E[Y 1
i,A|Di = 1]− E[Y 1

i,B |Di = 1]− (E[Y 0
i,A|Di = 1]− E[Y 0

i,B |Di = 1]) = E[Y 1
i,A|Di = 0]− E[Y 1

i,B |Di = 0]− (E[Y 0
i,A|Di = 0]− E[Y 0

i,B |Di = 0]).

After some manipulation, we get:

E[Y 1
i,A − Y 0

i,A|Di = 1]− E[Y 1
i,B − Y 0

i,B |Di = 1] = E[Y 1
i,A − Y 0

i,A|Di = 0]− E[Y 1
i,B − Y 0

i,B |Di = 0], .

which proves the result.

Remark. There remains a final question: are there any conditions under which
we could use the DIDr estimator to identify the effect of the treatment on the
switchers after the treatment takes place? In practice, that means that we need
to recover the trends the switchers would have experienced had they not entered
the treatment. This puts a stark requirement on the available data because we
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have no information on what outcomes in the absence of the treatment would
be in the second period. One natural but also super strong assumption is to
assume that the change in outcomes among the always takers in the presence of
the treatment is the same as the one that the switchers would have experienced
in the absence of the treatment:

Hypothesis 4.15 (Parallel Trends for Always Takers in the Presence of the
Treatment and Switchers in the Absence of the Treatment). We assume that the
trends in the potential outcomes in the presence the treatment for the always
takers are the same as the trends in potential outcomes in the absence of the
treatment for the switchers :

E[Y 1
i,A|Di = 1]− E[Y 1

i,B |Di = 1] = E[Y 0
i,A|Di = 0]− E[Y 0

i,B |Di = 0].

Under Assumption 4.15, we can recover the treatment effect on teh switchers in
the second period:

Theorem 4.9 (DIDr identifies TUT in the second period). Under Assump-
tions 4.7, 4.8 and 4.15, the DIDr estimator identifies the average effect of the
Treatment on the switchers after the treatment:

∆Y
DIDr = ∆YA

TUT ,

with:

∆YA
TUT = E[Y 1

i,A − Y 0
i,A|Di = 0].

Proof.

∆Y
DIDr = E[Yi,A|Di = 0]− E[Yi,B |Di = 0]− (E[Yi,A|Di = 1]− E[Yi,B |Di = 1])

= E[Y 1
i,A|Di = 0]− E[Y 0

i,B |Di = 0]− (E[Y 1
i,A|Di = 1]− E[Y 1

i,B |Di = 1])
= E[Y 1

i,A|Di = 0]− E[Y 0
i,B |Di = 0]− (E[Y 0

i,A|Di = 0]− E[Y 0
i,B |Di = 0])

= E[Y 1
i,A − Y 0

i,A|Di = 0]

where the second equality follows from Assumptions 4.7 and 4.8 and the switching
equation, and the third equality follows from Assumption 4.15.

Remark. What does Assumption 4.15 really mean? It is unusual, but is it highly
restrictive? The following lemma helps to make sense of it:
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Lemma 4.5 (Parallel Trends and Treatment Effects). The parallel trends as-
sumptions restrict the way treatment effects might change over time: (i) As-
sumptions 4.9 and 4.15 together imply the effect of the treatment is constant
over time among always takers: ∆YA

TT = ∆YB
TT ; (ii) Assumptions 4.14 and 4.15

together imply the effect of the treatment is constant over time among switch-
ers: ∆YA

TUT = ∆YB
TUT ; (iii) Assumptions 4.9, 4.14 and 4.15 together imply the

effect of the treatment is constant over time among switchers and always takers:
∆YA
TUT = ∆YB

TUT and ∆YA
TT = ∆YB

TT .

Proof. Substracting the parallel trends condition in Assumption 4.9 from the
parallel trends condition in Assumption 4.15, we have:

E[Y 1
i,A|Di = 1]− E[Y 1

i,B |Di = 1]− (E[Y 0
i,A|Di = 1]− E[Y 0

i,B |Di = 1]) = E[Y 0
i,A|Di = 0]− E[Y 0

i,B |Di = 0]− (E[Y 0
i,A|Di = 0]− E[Y 0

i,B |Di = 0]).

After some manipulation, we get:

E[Y 1
i,A − Y 0

i,A|Di = 1] = E[Y 1
i,B − Y 0

i,B |Di = 1].

which proves the first result.

Substracting the parallel trends condition in Assumption 4.14 from the parallel
trends condition in Assumption 4.15, we have:

E[Y 1
i,A|Di = 1]− E[Y 1

i,B |Di = 1]− (E[Y 1
i,A|Di = 1]− E[Y 1

i,B |Di = 1]) = E[Y 1
i,A|Di = 0]− E[Y 1

i,B |Di = 0]− (E[Y 0
i,A|Di = 0]− E[Y 0

i,B |Di = 0]).

After some manipulation, we get:

E[Y 1
i,A − Y 0

i,A|Di = 0] = E[Y 1
i,B − Y 0

i,B |Di = 0].

which proves the second result.

The first two results imply the last one.

Remark. It is noteworthy that combining the three assumptions together does
not imply anything more than when combining them separately. The key is
that Assumptions 4.9 and 4.14 together already imply that treatment effects
change in the same way over time in both groups. Assumption 4.15 together
with Assumptions 4.9 and 4.14 implies also that all potential outcomes have to
change in the same way over time in both groups. The only way for these two
properties to be true at the same time is for treatment effects in noth groups to
be constant over time.
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Remark. Note that Lemma 4.5 does not imply that treatment effects are the
same in both groups. They do not have to be. Assumptions 4.9, 4.14 and 4.15
allow for the treatment effects among switchers and always takers to be different.

Remark. A useful result is also to express the bias of the DIDr estimator when
only Assumption 4.9 holds. The following lemma does the job:

Theorem 4.10 (Bias of the DIDr estimator). Under Assumptions 4.7, 4.8 and
4.9, the DIDr estimator is biased for the average effect of the Treatment on the
switchers before and after the treatment:

∆Y
DIDr = ∆YB

TUT +BYBDIDr

∆Y
DIDr = ∆YA

TUT +BYADIDr

with:

BYBDIDr = ∆YA
TUT −∆YB

TUT − (∆YA
TT −∆YB

TT )
BYADIDr = −(∆YA

TT −∆YB
TT ).

Proof.

∆Y
DIDr = E[Yi,A − Yi,B |Di = 0]− E[Yi,A − Yi,B |Di = 1]

= E[Y 1
i,A − Y 0

i,B |Di = 0]− E[Y 1
i,A − Y 1

i,B |Di = 1]
= E[Y 1

i,A − Y 0
i,B |Di = 0]− E[Y 1

i,A − Y 1
i,B |Di = 0] + E[Y 1

i,A − Y 1
i,B |Di = 0]− E[Y 1

i,A − Y 1
i,B |Di = 1]

= E[Y 1
i,B − Y 0

i,B |Di = 0] + E[Y 1
i,A − Y 1

i,B |Di = 0]− E[Y 1
i,A − Y 1

i,B |Di = 1]
= ∆YB

TUT + E[Y 1
i,A − Y 1

i,B |Di = 0]− E[Y 1
i,A − Y 1

i,B |Di = 1]
− (E[Y 0

i,A − Y 0
i,B |Di = 0]− E[Y 0

i,A − Y 0
i,B |Di = 1])

= ∆YB
TUT + ∆YA

TUT −∆YB
TUT − (∆YA

TT −∆YB
TT )

where the second equality follows from Assumptions 4.7 and 4.8 and the switching
equation, and the fifth equality follows from Assumption 4.9.

∆Y
DIDr = E[Yi,A − Yi,B |Di = 0]− E[Yi,A − Yi,B |Di = 1]

= E[Y 1
i,A − Y 0

i,B |Di = 0]− E[Y 1
i,A − Y 1

i,B |Di = 1]
= E[Y 1

i,A − Y 0
i,B |Di = 0]− E[Y 0

i,A − Y 0
i,B |Di = 0] + E[Y 0

i,A − Y 0
i,B |Di = 0]

− E[Y 0
i,A − Y 0

i,B |Di = 1] + E[Y 0
i,A − Y 0

i,B |Di = 1]− E[Y 1
i,A − Y 1

i,B |Di = 1]
= E[Y 1

i,A − Y 0
i,A|Di = 0] + E[Y 0

i,A − Y 0
i,B |Di = 1]− E[Y 1

i,A − Y 1
i,B |Di = 1]

= ∆YA
TUT − (E[Y 1

i,A − Y 0
i,A|Di = 1]− E[Y 1

i,B − Y 0
i,B |Di = 1])

= ∆YA
TUT − (∆YA

TT −∆YB
TT )
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where the second equality follows from Assumptions 4.7 and 4.8 and the switching
equation, and the fourth equality follows from Assumption 4.9.

Theorem 4.10 helps to make sense of Figure 4.9. The bias of the DIDr estimator
for the average effect of the treatment on the switchers in the second period is
equal to the opposite of the change in treatment effects for the always treated
between the first and the second period. This means that if the effect of the
treatment increases over time for the always takers, the DIDr estimator will
be biased negatively. If this negative bias is sufficiently large, it can make an
altogether positive treatment effect (both on switchers and always takers at every
period) look negative. This is a very serious problem and the main reason why
you want to be very careful when using the DIDr estimator. This is actually
what happens in Figure 4.9: the change in treatment effect over time among the
always treated is very large (it is equal to 0.37) while the treatment effect is only
equal to 0.3. As a consequence, the DIDr estimator is equal to -0.11 whereas
every average treatment effect is positive: ∆̂yA

TT = 0.54 ∆̂yB
TT = 0.17, ∆̂yA

TUT =
0.3 and ∆̂yB

TUT = 0.17.

Theorem 4.10 also explains why the DIDr estimator is biased for the effect of
the treatment in the first period. This is because the effect of the treatment
changes differently over time among switchers and among always takers. On
Figure 4.9, the average treatment effect on switchers increases by 0.12, and it
is not approximated well by the change in treatment effect among the always
takers (0.37). As a consequence, the DIDr estimator is equal to -0.11 while the
average effect of the treatment on the switchers in the first period is equal to:
∆̂yB
TUT = 0.17.

Example 4.26. Let us now explore how the way Theorem 4.10 plays out in our
data. For that, we are going to first switch off the change in treatment effects
that is specific to the always takers in the second period. As a case in point, we
are going to set ᾱAT = 0.
param["baralphaAT"] <- 0

Let’s now simulate a dataset according to these new equations.
set.seed(1234)
N <- 1000
cov.eta.omega <- matrix(c(param["sigma2eta"],0,param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),

0,param["sigma2eta"],param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),
param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["sigma2omega"]),ncol=3,nrow=3,byrow=T)

eta.omega <- as.data.frame(mvrnorm(N,c(0,0,0),cov.eta.omega))
colnames(eta.omega) <- c('etaA','etaB','omega')
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
y0B <- mu + UB
Y0B <- exp(y0B)
Ds <- rep(0,N)
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V <- param["gamma"]*(mu-param["barmu"])+eta.omega$omega
Ds[y0B+V<=log(param["barY"])] <- 1
alphaB <- param["baralphaB"]+ param["thetaB"]*mu + eta.omega$etaB
y1B <- y0B+alphaB
Y1B <- exp(y1B)
epsilonA <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
U0A <- param["rho"]*UB + epsilonA
y0A <- mu + U0A + param["delta"]
alphaA <- param["baralphaA"]+ param["baralphaAT"]*Ds+ param["thetaA"]*mu + eta.omega$etaA
y1A <- y0A+alphaA
Y0A <- exp(y0A)
Y1A <- exp(y1A)
yB <- y1B*Ds+y0B*(1-Ds)
YB <- Y1B*Ds+Y0B*(1-Ds)
yA <- y1A
YA <- Y1A

Let’s see how DID works on this data.
x <- c("Before","After")
y.AT <- c(mean(yB[Ds==1]),mean(yA[Ds==1]))
y.AT.counterfactual <- c(mean(y0B[Ds==1]),mean(y0A[Ds==1]))
y.Switchers <- c(mean(yB[Ds==0]),mean(yA[Ds==0]))
y.Switchers.counterfactual <- c(mean(y0B[Ds==0]),mean(y0A[Ds==0]))
y.Switchers.counterfactual.1 <- c(mean(y1B[Ds==0]),mean(y1A[Ds==0]))
y.Switchers.DID <- c(mean(yB[Ds==0]),mean(yB[Ds==0])+mean(yA[Ds==1])-mean(yB[Ds==1]))
y.Switchers.DID.1 <- c(mean(yA[Ds==0])-(mean(yA[Ds==1])-mean(yB[Ds==1])),mean(yA[Ds==0]))
data.DID.plot <- as.data.frame(c(y.AT,y.AT.counterfactual,y.Switchers,y.Switchers.counterfactual,y.Switchers.counterfactual.1,y.Switchers.DID,y.Switchers.DID.1))
colnames(data.DID.plot) <- c("Outcome")
data.DID.plot$Period <- factor(rep(x,7),levels=c("Before","After"))
data.DID.plot$Group <- factor(c("Always Treated","Always Treated","Always Treated counterfactual y0","Always Treated counterfactual y0","Switchers","Switchers","Switchers counterfactual y0","Switchers counterfactual y0","Switchers counterfactual y1","Switchers counterfactual y1","Switchers DIDr","Switchers DIDr","Switchers DIDr1","Switchers DIDr1"),levels=c("Switchers","Switchers counterfactual y1","Switchers counterfactual y0","Switchers DIDr","Switchers DIDr1","Always Treated","Always Treated counterfactual y0"))
data.DID.plot$Observed <- factor(c("Observed","Observed","Unobserved","Unobserved","Observed","Observed","Unobserved","Unobserved","Unobserved","Unobserved","Generated","Generated","Generated","Generated"),levels=c("Observed","Unobserved","Generated"))

WW.before <- (mean(yB[Ds==0])-mean(yB[Ds==1]))
WW.after <- (mean(yA[Ds==0])-mean(yA[Ds==1]))
BA.AT <- mean(yA[Ds==1])-mean(yB[Ds==1])
BA.Switchers <- mean(yA[Ds==0])-mean(yB[Ds==0])
Counterfactual.after <- mean(yB[Ds==0])+BA.AT
DIDr <- BA.Switchers - BA.AT
TTASwitchers <- mean(alphaA[Ds==0])
TTBSwitchers <- mean(alphaB[Ds==0])
TTAAT <- mean(alphaA[Ds==1])
TTBAT <- mean(alphaB[Ds==1])

ggplot(data.DID.plot,aes(x=Period,y=Outcome,group=Group,color=Group,shape=Group,linetype=Observed))+
geom_line() +
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geom_point()+
scale_linetype_discrete(guide='none') +
theme_bw()
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Figure 4.10: Evolution of average outcomes in the always treated and switchers
group in the reverse DID design where everyone is treated in the second period
and ᾱAT = 0

What is happening on Figure 4.10? First, the DIDr estimator is equal to 0.19,
while the effect of the treatment on switchers is equal to 0.3 in the second period
and to 0.17 in the first period. So now, the bias of the DIDr is not so large as to
make it reverse signs with respect to the true effect of the treatment. It is actually
almost zero for the effect on the switchers in the first period (B̂YBDIDr = 0.01).
This is because the condition for DIDr to capture the effect of the treatment on
switchers in the first period is almost fulfilled in the data. Theorem 4.10 shows
that this bias is equal to the difference in the change in teatment effect over time
between the switchers and the always takers. The change in treatment effect
for the switchers is equal to ∆̂YA

TUT − ∆̂YB
TUT = 0.12 and the change in treatment

effect for the always takers is equal to ∆̂YA
TT − ∆̂YB

TT = 0.07. They are almost
equal which makes DIDr almost unbiased for the effect of the treatment on
switchers in the first period.

On the contrary, the condition for DIDr to capture the effect of the treatment
on the switchers in the second period is not fulfilled in the data, not even almost.
Theorem 4.10 shows that the condition for DIDr to capture the effect of the
treatment on the switchers in the second period is that the treatment effect on
always takers be constant over time. This is unfortunately not the case in this
data, since ∆̂YA

TT − ∆̂YB
TT = 0.07. The bias of the DIDr estimator is thus large

(and negative) for ∆̂YA
TUT : B̂

YA
DIDr = -0.11.

Remark. Note that in this model, the DIDr estimator is still biased for ∆YB
TUT .

The reasons why are left as an exercise.

Example 4.27. Let us finally explore the last condition in Theorem 4.10 that
makes DIDr unbiased for ∆YA

TUT , the effect of the treatment on switchers in the
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second period. We are going to switch off the change in treatment effects that
occurs over time in both groups: we are going to set ᾱA = ᾱB = 0.1.
param["baralphaA"] <- 0.1
param["baralphaB"] <- 0.1

Let’s now simulate a dataset according to these new equations.
set.seed(1234)
N <- 1000
cov.eta.omega <- matrix(c(param["sigma2eta"],0,param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),

0,param["sigma2eta"],param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),
param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["sigma2omega"]),ncol=3,nrow=3,byrow=T)

eta.omega <- as.data.frame(mvrnorm(N,c(0,0,0),cov.eta.omega))
colnames(eta.omega) <- c('etaA','etaB','omega')
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
y0B <- mu + UB
Y0B <- exp(y0B)
Ds <- rep(0,N)
V <- param["gamma"]*(mu-param["barmu"])+eta.omega$omega
Ds[y0B+V<=log(param["barY"])] <- 1
alphaB <- param["baralphaB"]+ param["thetaB"]*mu + eta.omega$etaB
y1B <- y0B+alphaB
Y1B <- exp(y1B)
epsilonA <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
U0A <- param["rho"]*UB + epsilonA
y0A <- mu + U0A + param["delta"]
alphaA <- param["baralphaA"]+ param["baralphaAT"]*Ds+ param["thetaA"]*mu + eta.omega$etaA
y1A <- y0A+alphaA
Y0A <- exp(y0A)
Y1A <- exp(y1A)
yB <- y1B*Ds+y0B*(1-Ds)
YB <- Y1B*Ds+Y0B*(1-Ds)
yA <- y1A
YA <- Y1A

Let’s see how DID works on this data.
x <- c("Before","After")
y.AT <- c(mean(yB[Ds==1]),mean(yA[Ds==1]))
y.AT.counterfactual <- c(mean(y0B[Ds==1]),mean(y0A[Ds==1]))
y.Switchers <- c(mean(yB[Ds==0]),mean(yA[Ds==0]))
y.Switchers.counterfactual <- c(mean(y0B[Ds==0]),mean(y0A[Ds==0]))
y.Switchers.counterfactual.1 <- c(mean(y1B[Ds==0]),mean(y1A[Ds==0]))
y.Switchers.DID <- c(mean(yB[Ds==0]),mean(yB[Ds==0])+mean(yA[Ds==1])-mean(yB[Ds==1]))
y.Switchers.DID.1 <- c(mean(yA[Ds==0])-(mean(yA[Ds==1])-mean(yB[Ds==1])),mean(yA[Ds==0]))
data.DID.plot <- as.data.frame(c(y.AT,y.AT.counterfactual,y.Switchers,y.Switchers.counterfactual,y.Switchers.counterfactual.1,y.Switchers.DID,y.Switchers.DID.1))
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colnames(data.DID.plot) <- c("Outcome")
data.DID.plot$Period <- factor(rep(x,7),levels=c("Before","After"))
data.DID.plot$Group <- factor(c("Always Treated","Always Treated","Always Treated counterfactual y0","Always Treated counterfactual y0","Switchers","Switchers","Switchers counterfactual y0","Switchers counterfactual y0","Switchers counterfactual y1","Switchers counterfactual y1","Switchers DIDr","Switchers DIDr","Switchers DIDr1","Switchers DIDr1"),levels=c("Switchers","Switchers counterfactual y1","Switchers counterfactual y0","Switchers DIDr","Switchers DIDr1","Always Treated","Always Treated counterfactual y0"))
data.DID.plot$Observed <- factor(c("Observed","Observed","Unobserved","Unobserved","Observed","Observed","Unobserved","Unobserved","Unobserved","Unobserved","Generated","Generated","Generated","Generated"),levels=c("Observed","Unobserved","Generated"))

WW.before <- (mean(yB[Ds==0])-mean(yB[Ds==1]))
WW.after <- (mean(yA[Ds==0])-mean(yA[Ds==1]))
BA.AT <- mean(yA[Ds==1])-mean(yB[Ds==1])
BA.Switchers <- mean(yA[Ds==0])-mean(yB[Ds==0])
Counterfactual.after <- mean(yB[Ds==0])+BA.AT
DIDr <- BA.Switchers - BA.AT
TTASwitchers <- mean(alphaA[Ds==0])
TTBSwitchers <- mean(alphaB[Ds==0])
TTAAT <- mean(alphaA[Ds==1])
TTBAT <- mean(alphaB[Ds==1])

ggplot(data.DID.plot,aes(x=Period,y=Outcome,group=Group,color=Group,shape=Group,linetype=Observed))+
geom_line() +
geom_point()+
scale_linetype_discrete(guide='none') +
theme_bw()
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Figure 4.11: Evolution of average outcomes in the always treated and switchers
group in the reverse DID design where everyone is treated in the second period
and ᾱA = ᾱB = 0

Figure 4.11 shows that the DIDr estimator is almost OK in our setting. The
DIDr estimator is equal to 0.19 while the treatment effect on the switchers
is equal to ∆̂YA

TUT = 0.2 in the second period and ∆̂YB
TUT = 0.17 in the first

period. There still is a difference between the estimator and the treatment effect
of interest, but the difference is small enough that it might be attributed to
sampling noise. Remember that the condition for DIDr to identify ∆YA

TUT is
Assumption 4.15 that the trends in potential outcomes in the absence of the
treatment among switchers is the same as the trend in potential outcomes in
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the presence of the treatment among always takers. This is almost what we see,
since the change in potential outcomes absent the treatment among switchers is
equal to 0.03 while the change in potential outcomes under the treatment regime
among always takers is equal to 0.04. The fact that these two quantities differ
slightly is what biases the DIDr estimator in the sample that we have generated.
Note finally that Assumption 4.15 together with Assumption 4.9 implies that
the effect of the treatment is constant over time among always takers, as Lemma
4.5 shows. This is also the condition for the DIDr estimator to identify ∆YA

TUT

under Assumption 4.9, as Lemma 4.5 shows. Here, the effect of the treatment
among always takers is equal to 0.17 in the first period and to 0.14 in the second
period.

Remark. Actually, the conditions for DIDr to indentify any treatment effect are
not fulfilled in our model. That reasons why are left as an exercise.

4.3.2.2 DID designs where everyone is in the treatment at the first
period

Compared to the setting in the previous section, the main change is to Assumption
4.7:

Hypothesis 4.16 (Everyone Receives Treatment in the First Period). We
assume that every unit in the population receives the treatment in the first
period: Di,B = 1, ∀i.

Under Assumption 4.16, and without loss of generality, we can still write Di =
Di,A. In order for the DID estimator to identify a fully-fledged treatment effect,
we are going to need a pretty stark assumption:

Hypothesis 4.17 (No Effect After Exiting the Treatment). We assume that,
after exiting the treatment, agents experience the same outcomes as if they had
never entered the treatment: Yi,A = Y 0

i,A, ∀i such that Di,A = 0.

A consequence of Assumptions 4.16 and 4.17 is that we can write observed
outcomes as a function of treatment and potential outcomes using the usual
switching equation.

Remark. Note that Assumption 4.17 is extremely restrictive: units return imme-
diately to their outcomes in the absence of the treatment right after exiting the
treatment state. We are going to relax that assumption later.

The following theorem shows that DID identifies a fully-fledged treatment effect
under (arguably strong) assumptions:

Theorem 4.11 (DID identifies TUT in the second period). Under Assumptions
4.16, 4.17 and 4.14, the DID estimator identifies the effect of the treatment on
the switchers in the second period:

∆Y
DID = ∆YA

TUT ,
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Proof.

∆Y
DID = E[Yi,A|Di = 1]− E[Yi,B |Di = 1]− (E[Yi,A|Di = 0]− E[Yi,B |Di = 0])

= E[Y 1
i,A|Di = 1]− E[Y 1

i,B |Di = 1]− (E[Y 0
i,A|Di = 0]− E[Y 1

i,B |Di = 0])
= E[Y 1

i,A|Di = 0]− E[Y 1
i,B |Di = 0]− (E[Y 0

i,A|Di = 0]− E[Y 1
i,B |Di = 0])

= E[Y 1
i,A − Y 0

i,A|Di = 0]

where the second equality follows from Assumptions 4.16 and 4.17 and the
switching equation, and the third equality follows from Assumption 4.14.

Invoking another (even stronger) assumption, DID identifies the effect of the
treatment on switchers in the first period:

Theorem 4.12 (DID identifies TUT in the first period). Under Assumptions
4.16, 4.17 and 4.15, the DID estimator identifies the effect of the treatment on
the switchers in the first period:

∆Y
DID = ∆YB

TUT ,

Proof.

∆Y
DID = E[Yi,A|Di = 1]− E[Yi,B |Di = 1]− (E[Yi,A|Di = 0]− E[Yi,B |Di = 0])

= E[Y 1
i,A|Di = 1]− E[Y 1

i,B |Di = 1]− (E[Y 0
i,A|Di = 0]− E[Y 1

i,B |Di = 0])
= E[Y 0

i,A|Di = 0]− E[Y 0
i,B |Di = 0]− (E[Y 0

i,A|Di = 0]− E[Y 1
i,B |Di = 0])

= E[Y 1
i,B − Y 0

i,B |Di = 0]

where the second equality follows from Assumptions 4.16 and 4.17 and the
switching equation, and the third equality follows from Assumption 4.15.

We can also study the bias of the DID estimator under the classical parallel
trends assumption (Assumption 4.9):

Lemma 4.6 (Bias of the DID estimator). Under Assumptions 4.16, 4.17 and
4.9, the DID estimator is biased for the average effect of the Treatment on the
switchers before and after the treatment:

∆Y
DID = ∆YB

TUT +BYBDID

∆Y
DID = ∆YA

TUT +BYADID

with:
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BYBDID = ∆YA
TT −∆YB

TT

BYADID = ∆YA
TT −∆YB

TT − (∆YA
TUT −∆YB

TUT ).

Proof.

∆Y
DID = E[Yi,A − Yi,B |Di = 1]− E[Yi,A − Yi,B |Di = 0]

= E[Y 1
i,A − Y 1

i,B |Di = 1]− E[Y 0
i,A − Y 1

i,B |Di = 0]
= E[Y 1

i,A − Y 1
i,B |Di = 1]− E[Y 0

i,A − Y 0
i,B |Di = 1] + E[Y 0

i,A − Y 0
i,B |Di = 0]− E[Y 0

i,A − Y 1
i,B |Di = 0]

= E[Y 1
i,B − Y 0

i,B |Di = 0] + E[Y 1
i,A − Y 1

i,B − (Y 0
i,A − Y 0

i,B)|Di = 1] = ∆YB
TUT + ∆YA

TT −∆YB
TT ,

where the second equality follows from Assumptions 4.16, 4.17 and the switching
equation, and the third equality follows from Assumption 4.9.

∆Y
DID = E[Yi,A − Yi,B |Di = 1]− E[Yi,A − Yi,B |Di = 0]

= E[Y 1
i,A − Y 1

i,B |Di = 1]− E[Y 0
i,A − Y 1

i,B |Di = 0]
= E[Y 1

i,A − Y 1
i,B |Di = 1]− E[Y 1

i,A − Y 1
i,B |Di = 0] + E[Y 1

i,A − Y 1
i,B |Di = 0]− E[Y 0

i,A − Y 1
i,B |Di = 0]

= E[Y 1
i,A − Y 0

i,A|Di = 0] + E[Y 1
i,A − Y 1

i,B |Di = 1]− E[Y 1
i,A − Y 1

i,B |Di = 0]
= ∆YA

TUT + E[Y 1
i,A − Y 1

i,B |Di = 1]− E[Y 1
i,A − Y 1

i,B |Di = 0]
− E[Y 0

i,A − Y 0
i,B |Di = 1] + E[Y 0

i,A − Y 0
i,B |Di = 0]

= ∆YA
TUT + ∆YA

TT −∆YB
TT − (∆YA

TUT −∆YB
TUT ),

where the second equality follows from Assumptions 4.16, 4.17 and the switching
equation, and the fifth equality follows from Assumption 4.9.

Example 4.28. Let us generate data in our example model that complies with
Assumptions 4.16 and 4.17.

y1
i,A = y0

i,A + ᾱA + ᾱATDi,A + θAµi + ηi,A

y0
i,A = µi + δ + U0

i,A

U0
i,A = ρUi,B + εi,A

y1
i,B = y0

i,B + ᾱB + θBµi + ηi,B

y0
i,B = µi + Ui,B

Ui,B ∼ N (0, σ2
U )

Di,A = 1[y0
i,B + Vi ≤ ȳ]

Vi = γ(µi − µ̄) + ωi

(ηi,A, ηi,B , ωi) ∼ N (0, 0, 0, σ2
η, σ

2
η, σ

2
ω, 0, ρη,ω)
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param <- c(8,.5,.28,1500,0.9,0.01,0.01,0.05,0.05,0.05,0.2,0.1,0.3,0.1,0.28,0)
names(param) <- c("barmu","sigma2mu","sigma2U","barY","rho","thetaA","thetaB","sigma2epsilon","sigma2eta","delta","baralphaA","baralphaB","baralphaAT","gamma","sigma2omega","rhoetaomega")

set.seed(1234)
N <- 1000
cov.eta.omega <- matrix(c(param["sigma2eta"],0,param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),

0,param["sigma2eta"],param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),
param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["sigma2omega"]),ncol=3,nrow=3,byrow=T)

eta.omega <- as.data.frame(mvrnorm(N,c(0,0,0),cov.eta.omega))
colnames(eta.omega) <- c('etaA','etaB','omega')
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
y0B <- mu + UB
Y0B <- exp(y0B)
Ds <- rep(0,N)
V <- param["gamma"]*(mu-param["barmu"])+eta.omega$omega
Ds[y0B+V<=log(param["barY"])] <- 1
alphaB <- param["baralphaB"]+ param["thetaB"]*mu + eta.omega$etaB
y1B <- y0B+alphaB
Y1B <- exp(y1B)
epsilonA <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
U0A <- param["rho"]*UB + epsilonA
y0A <- mu + U0A + param["delta"]
alphaA <- param["baralphaA"]+ param["baralphaAT"]*Ds+ param["thetaA"]*mu + eta.omega$etaA
y1A <- y0A+alphaA
Y0A <- exp(y0A)
Y1A <- exp(y1A)
yA <- y1A*Ds+y0A*(1-Ds)
YA <- Y1A*Ds+Y0A*(1-Ds)
yB <- y1B
YB <- Y1B

Let’s see how DID works on this data.
x <- c("Before","After")
y.AT <- c(mean(yB[Ds==1]),mean(yA[Ds==1]))
y.AT.counterfactual <- c(mean(y0B[Ds==1]),mean(y0A[Ds==1]))
y.Switchers <- c(mean(yB[Ds==0]),mean(yA[Ds==0]))
y.Switchers.counterfactual <- c(mean(y0B[Ds==0]),mean(y0A[Ds==0]))
y.Switchers.counterfactual.1 <- c(mean(y1B[Ds==0]),mean(y1A[Ds==0]))
y.Switchers.DID <- c(mean(yB[Ds==0]),mean(yB[Ds==0])+mean(yA[Ds==1])-mean(yB[Ds==1]))
y.Switchers.DID.1 <- c(mean(yA[Ds==0])-(mean(yA[Ds==1])-mean(yB[Ds==1])),mean(yA[Ds==0]))
data.DID.plot <- as.data.frame(c(y.AT,y.AT.counterfactual,y.Switchers,y.Switchers.counterfactual,y.Switchers.counterfactual.1,y.Switchers.DID,y.Switchers.DID.1))
colnames(data.DID.plot) <- c("Outcome")
data.DID.plot$Period <- factor(rep(x,7),levels=c("Before","After"))
data.DID.plot$Group <- factor(c("Always Treated","Always Treated","Always Treated counterfactual y0","Always Treated counterfactual y0","Switchers","Switchers","Switchers counterfactual y0","Switchers counterfactual y0","Switchers counterfactual y1","Switchers counterfactual y1","Switchers DIDr","Switchers DIDr","Switchers DIDr1","Switchers DIDr1"),levels=c("Switchers","Switchers counterfactual y1","Switchers counterfactual y0","Switchers DIDr","Switchers DIDr1","Always Treated","Always Treated counterfactual y0"))
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data.DID.plot$Observed <- factor(c("Observed","Observed","Unobserved","Unobserved","Observed","Observed","Unobserved","Unobserved","Unobserved","Unobserved","Generated","Generated","Generated","Generated"),levels=c("Observed","Unobserved","Generated"))

WW.before <- (mean(yB[Ds==1])-mean(yB[Ds==0]))
WW.after <- (mean(yA[Ds==1])-mean(yA[Ds==0]))
BA.AT <- mean(yA[Ds==1])-mean(yB[Ds==1])
BA.Switchers <- mean(yA[Ds==0])-mean(yB[Ds==0])
Counterfactual.after <- mean(yB[Ds==0])+BA.AT
DID <- BA.AT - BA.Switchers
TTASwitchers <- mean(alphaA[Ds==0])
TTBSwitchers <- mean(alphaB[Ds==0])
TTAAT <- mean(alphaA[Ds==1])
TTBAT <- mean(alphaB[Ds==1])

ggplot(data.DID.plot,aes(x=Period,y=Outcome,group=Group,color=Group,shape=Group,linetype=Observed))+
geom_line() +
geom_point()+
scale_linetype_discrete(guide='none') +
theme_bw()
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Figure 4.12: Evolution of average outcomes in the always treated and switchers
group in the reverse DID design where everyone is treated in the first period

In Figure 4.12, the effect of the treatment on the switchers is equal to ∆̂yA
TUT =

0.3 in the second period and to ∆̂yB
TUT = 0.17 in the first period. The DID

estimator is equal to ∆̂y
DID = 0.58 which is of the correct sign but much too big

for both treatment effects. The problem is that the change in the outcomes of the
always treated (0.44) overestimates the change in outcomes the switchers would
have experienced had they stayed in the treatment (0.16). As a consequence,
Assumption 4.14 is not valid and the DID estimator is biased. Following Lemma
4.6, the bias of the DID estimator for the effect on the switchers in the second
period is equal to the difference in the change of treatment effect over time
between always treated (∆̂YA

TT − ∆YB
TT = 0.54 − 0.17 = 0.37) and switchers

(∆̂YA
TUT − ∆̂YB

TUT = 0.3 − 0.17 = 0.12). The bias of the DID estimator for the
effect of the treatment on the switchers in the first period is even larger (B̂yBDID =
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0.41). Following Lemma 4.6, it is close to the change in treatment effect over
time among the switchers (∆̂YA

TT − ∆̂YB
TT = 0.54 − 0.17 = 0.37).

Example 4.29. What happens if we enforce the fact that treatment effects
vary in the same way among always takers and switchers. Let’s find out.
param["baralphaAT"] <- 0

Let’s simulate the new data:
set.seed(1234)
N <- 1000
cov.eta.omega <- matrix(c(param["sigma2eta"],0,param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),

0,param["sigma2eta"],param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),
param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["sigma2omega"]),ncol=3,nrow=3,byrow=T)

eta.omega <- as.data.frame(mvrnorm(N,c(0,0,0),cov.eta.omega))
colnames(eta.omega) <- c('etaA','etaB','omega')
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
y0B <- mu + UB
Y0B <- exp(y0B)
Ds <- rep(0,N)
V <- param["gamma"]*(mu-param["barmu"])+eta.omega$omega
Ds[y0B+V<=log(param["barY"])] <- 1
alphaB <- param["baralphaB"]+ param["thetaB"]*mu + eta.omega$etaB
y1B <- y0B+alphaB
Y1B <- exp(y1B)
epsilonA <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
U0A <- param["rho"]*UB + epsilonA
y0A <- mu + U0A + param["delta"]
alphaA <- param["baralphaA"]+ param["baralphaAT"]*Ds+ param["thetaA"]*mu + eta.omega$etaA
y1A <- y0A+alphaA
Y0A <- exp(y0A)
Y1A <- exp(y1A)
yA <- y1A*Ds+y0A*(1-Ds)
YA <- Y1A*Ds+Y0A*(1-Ds)
yB <- y1B
YB <- Y1B

Let’s see how DID works on this data.
x <- c("Before","After")
y.AT <- c(mean(yB[Ds==1]),mean(yA[Ds==1]))
y.AT.counterfactual <- c(mean(y0B[Ds==1]),mean(y0A[Ds==1]))
y.Switchers <- c(mean(yB[Ds==0]),mean(yA[Ds==0]))
y.Switchers.counterfactual <- c(mean(y0B[Ds==0]),mean(y0A[Ds==0]))
y.Switchers.counterfactual.1 <- c(mean(y1B[Ds==0]),mean(y1A[Ds==0]))
y.Switchers.DID <- c(mean(yB[Ds==0]),mean(yB[Ds==0])+mean(yA[Ds==1])-mean(yB[Ds==1]))
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y.Switchers.DID.1 <- c(mean(yA[Ds==0])-(mean(yA[Ds==1])-mean(yB[Ds==1])),mean(yA[Ds==0]))
data.DID.plot <- as.data.frame(c(y.AT,y.AT.counterfactual,y.Switchers,y.Switchers.counterfactual,y.Switchers.counterfactual.1,y.Switchers.DID,y.Switchers.DID.1))
colnames(data.DID.plot) <- c("Outcome")
data.DID.plot$Period <- factor(rep(x,7),levels=c("Before","After"))
data.DID.plot$Group <- factor(c("Always Treated","Always Treated","Always Treated counterfactual y0","Always Treated counterfactual y0","Switchers","Switchers","Switchers counterfactual y0","Switchers counterfactual y0","Switchers counterfactual y1","Switchers counterfactual y1","Switchers DIDr","Switchers DIDr","Switchers DIDr1","Switchers DIDr1"),levels=c("Switchers","Switchers counterfactual y1","Switchers counterfactual y0","Switchers DIDr","Switchers DIDr1","Always Treated","Always Treated counterfactual y0"))
data.DID.plot$Observed <- factor(c("Observed","Observed","Unobserved","Unobserved","Observed","Observed","Unobserved","Unobserved","Unobserved","Unobserved","Generated","Generated","Generated","Generated"),levels=c("Observed","Unobserved","Generated"))

WW.before <- (mean(yB[Ds==1])-mean(yB[Ds==0]))
WW.after <- (mean(yA[Ds==1])-mean(yA[Ds==0]))
BA.AT <- mean(yA[Ds==1])-mean(yB[Ds==1])
BA.Switchers <- mean(yA[Ds==0])-mean(yB[Ds==0])
Counterfactual.after <- mean(yB[Ds==0])+BA.AT
DID <- BA.AT - BA.Switchers
TTASwitchers <- mean(alphaA[Ds==0])
TTBSwitchers <- mean(alphaB[Ds==0])
TTAAT <- mean(alphaA[Ds==1])
TTBAT <- mean(alphaB[Ds==1])

ggplot(data.DID.plot,aes(x=Period,y=Outcome,group=Group,color=Group,shape=Group,linetype=Observed))+
geom_line() +
geom_point()+
scale_linetype_discrete(guide='none') +
theme_bw()
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Figure 4.13: Evolution of average outcomes in the always treated and switchers
group in the reverse DID design where everyone is treated in the first period and
treatment effects that vary in the same way among switchers and always takers

As expected from Theorem 4.11, Figure 4.13 shows that DID almost estimates
the effect of the treatment on the switchers in the second period. This makes
sense, since the change in outcomes for the switchers in the presence of the
treatment (0.16) is well approximated by the observed change in outcomes for
the always treated (0.14). According to Lemma 4.6, this is because the change
in treatment effect over time for the always treated (∆̂YA

TT −∆YB
TT = 0.24 − 0.17



4.3. DIFFERENCE IN DIFFERENCES 221

= 0.07) is close to the change in treatment effect over time for the switchers
(∆̂YA

TUT − ∆̂YB
TUT = 0.3 − 0.17 = 0.12). Note that the DID estimator is still biased

for the effect of the treatment on the switchers in the first period, because the
treatment effect on the always takers changes over time (Lemma 4.6).

Remark. Note that in this model, DID does not identify ∆YA
TUT . The reasons

why are left as an exercise.

Remark. We can relax Assumption 4.17 by redefining the potential outcomes
observed after the switchers exit from the treatment as the potential outcomes
observed when the treatment stops after having been experienced. One way
to parameterize this potential outcome is to make it a function of the time
elapsed since exiting the treatment: Y 0

i,t(τ), where τ denotes the number of
periods after exiting the treatment. For the switchers, in period A, τ = 1, for
example. One can then show that the DID estimator identifies the effect of the
treatment relative to exiting the treatment: ∆Y

DID = E[Y 1
i,A − Y 0

i,A(1)|Di = 0]
under Assumptions 4.16 and 4.14. The proof is left as an exercise.

4.3.3 Difference In Differences with multiple time periods
In real life, we generally have access to several time periods before and after
the treatment date. What happens to DID in that case? Well, several things
actually happen:

1. We now have several pre-treatment observations for each unit. Which one
should we choose to form our DID estimator? If we use all of them, should
we combine them? If yes, how?

2. We also have several post-treatment observations. Which one should we
choose to form our DID estimator? If we use all of them, should we combine
them? If yes, how?

3. We also have some units that will be treated for several periods in a row.
Should we use them to form a DIDr estimator? If yes, should we combine
them with the DID estimates? If yes, how?

4. We also might have some units that exit the treatment after some time.
Should we use them to form a DID estimator? Should we combine this
estimate with the others? If yes, how?

There is a lot of questions. In order to be able to answer them, I am for the
moment going to abstract from the last one. I am going to assume that once a
unit has entered the treatment, it cannot exit it. DID designs such as these are
called staggered designs. This is obviously a very strong assumption, but we will
relax it at some point. Let’s go now.

4.3.3.1 Identification

In this section, we are going to define rigorously the setting that we have in front
of us and the several treatment effects that we might want to estimate. This will
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be the most important part of the identification exercise. Once the definitions
are in place, identification will be mostly straightforward.

In a DID design with multiple time periods, time flows from t = 1 to t = T .
Di,t takes value one when unit i is treated at period t and zero otherwise. In a
staggered design, once treated, a unit is treated forever (the treatment is said
to be an absorbing state). As a consequence, we can characterize units by the
date at which they start to be treated. We are going to call this variable Di

and it takes values in the set {1, 2, . . . , T,∞}. Units treated at period 1 (or even
before, we cannot say for sure) are always treated in a staggered design. Then,
units enter at successive periods until the last one. Finally, some units may
never receive the treatment (never takers). By convention, we denote them with
Di =∞.

We can define a separate treatment effect for each of the treatment groups and
for each time period: ∆Yτ

TTd
= E[Y 1

i,d+τ − Y 0
i,d+τ |Di = d], for τ, d ∈ {1, 2, . . . , T}.

We can also form a very large bunch of DID estimators:

∆Y
DID(d, d′, τ, τ ′) = E[Yi,d+τ |Di = d]− E[Yi,d−τ ′ |Di = d]− (E[Yi,d+τ |Di = d′]− E[Yi,d−τ ′ |Di = d′]),

where τ, τ ′ > 0 and d′ > d+τ . ∆Y
DID(d, d′, τ, τ ′) tries to estimate the effect of the

treatment on units that first entered the treatment at period t = d (the treated
group here) using the units that received the treatment at period d′ > d as a
benchmark. ∆Y

DID(d, d′, τ, τ ′) compares how outcomes have changed between τ
periods after the treatment and τ ′ periods before the treatment.

Imposing d′ > d+ τ ensures that ∆Y
DID(d, d′, τ, τ ′) is a proper DID estimator. If

d− τ ′ < d′ < d+ τ , ∆Y
DID(d, d′, τ, τ ′) is not a proper DID estimator since units

in group d′ also receive the treatment between the two dates at which outcomes
are measured. When d′ < d − τ ′, ∆Y

DID(d, d′, τ, τ ′) compares the change in
outcomes in the group entering the treatment at date d with the changes in
outcomes occurring in a group that has already entered the treatment at a date
d′ that is prior the starting date of the DID. Since this estimator is a DIDr

estimator, I am going to denote it as such in the future. ∆Y
DIDr(d, d′, τ, τ ′) is

well-defined only when d′ < d− τ ′.

Before stating our first identification result, let us make some assumptions that
will mirror the simpler ones we made in the previous section. First, we are going
to assume that at least some units are untreated at some period:

Hypothesis 4.18 (Some Units are Not Treated). We assume that not all units
in the population are treated in the first period: Pr(Di = 1) < 1.

Next, we assume that agents cannot anticipate the treatment:

Hypothesis 4.19 (No Anticipation Effects over Time). We assume that agents
cannot anticipate that the program will happen and that they do not change
their behavior as a consequence: Yi,t = Y 0

i,t, ∀i ∈ {i : Di = d}, ∀t < d.
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As a consequence of Assumptions 4.18 and 4.19, we can write observed outcomes
as a function of treatment and potential outcomes using the usual switching
equation.

The final very important assumption that we can make is to assume that the
trends in the potential outcomes in the absence the treatment are the same for
the treated and the untreated units:

Hypothesis 4.20 (Parallel Trends for All Groups). We assume that the trends
in the potential outcomes in the absence the treatment are the same for all the
treatment groups:

∀d, t, t′ ∈ {1, 2, . . . , T} = E[Y 0
i,t|Di = d]− E[Y 0

i,t′ |Di = d] = E[Y 0
i,t|Di =∞]− E[Y 0

i,t′ |Di =∞].

We are now ready to state our main identification result:

Theorem 4.13 (DID identifies TT at Each Point in Time). Under Assumptions
4.18, 4.19 and 4.20, the DID estimator identifies the average effect of the
Treatment on the Treated in each time period:

∆Y
DID(d, d′, τ, τ ′) = ∆Yτ

TTd
,

where τ, τ ′ > 0 and d′ > d+ τ .

Proof.

∆Y
DID(d, d′, τ, τ ′) = E[Yi,d+τ − Yi,d−τ ′ |Di = d]− E[Yi,d+τ − Yi,d−τ ′ |Di = d′]

= E[Y 1
i,d+τ − Y 0

i,d−τ ′ |Di = d]− E[Y 0
i,d+τ − Y 0

i,d−τ ′ |Di = d′]
= E[Y 1

i,d+τ − Y 0
i,d−τ ′ |Di = d]− E[Y 0

i,d+τ − Y 0
i,d−τ ′ |Di = d]

= E[Y 1
i,d+τ − Y 0

i,d+τ |Di = d]

where the second equality follows from Assumptions 4.18 and 4.19 and the fact
that d′ > d+ τ . The third equality follows from Assumption 4.20. This proves
the result.

Theorem 4.13 shows that the basic mechanics of the DID estimator extends to
multiple periods. The problem with Theorem 4.13 is that we now have multiple
ATT estimates for various groups and time periods, using various time periods
and groups as reference. How do we reconcile all of these estimates in a unique
parameter, or at least a vector of parameters that makes some sense? Let’s define
sets of positive weights wk(d, d′, τ, τ ′) that sum to one. We can then define a set
of DID estimators:
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∆Y
DID(k) =

∑
wk(d, d′, τ, τ ′)∆Y

DID(d, d′, τ, τ ′),

where the sum is taken in coherence with the weights. These DID estimators are
going to identify various features of the effects of the treatment, using various
types of reference groups and time periods. Let us be more precise:

1. A first set of weights combines the various estimates of the same treatment
effect on the outcomes of group d observed at period d = τ . These
weights, which we denote wsd,τ (d′, τ ′), are such that they take value zero for
estimates ∆Y

DID(d′′, d′, τ ′′, τ ′) that are such d′′ 6= d and τ ′′ 6= τ and they
have:

∑
τ ′,d′>d+τ w

s
d,τ (d′, τ ′) = 1. One way to define these weights is to

make them proportional to the proportion of (d′, τ ′) groups of observations
in the population.

2. A second set of weights is going to combine the treatment effects themselves.
For example, one might want to measure the average effect of the treatment
τ periods after entering it. This type of dynamic treatment effect is useful
to measure how the effect of the treatment varies over time. There are two
versions of this set of weights: one unconditional and one conditional on at
least reaching a certain number of periods in the treatment (let’s say τ ′′ > τ
periods after the treatment). With the second version, all the estimates of
the dynamic effects of the treatment are going to be taken over the same
set of groups. With the first version, changes in treatment effects over time
might be confounded by changes in group composition. Let’s denote the first
type of weights wuτ (d, d′, τ ′) and the second wcτ,τ ′′(d, d′, τ ′) , with τ ′′ > τ .
We then have ∆Yu

DID(τ) =
∑
d,d′>d+τ,τ ′ w

u
τ (d, d′, τ ′)∆Y

DID(d, d′, τ, τ ′) and
∆Yc
DID(τ, τ ′′) =

∑
d,d′>d+τ,τ ′ w

c
τ,τ ′′(d, d′, τ ′)∆Y

DID(d, d′, τ, τ ′). These effects
can also be restricted to versions using a single reference period τ ′ to build
the DID estimator: ∆Yu

DID(τ, τ ′) and ∆Yc
DID(τ, τ ′, τ ′′).

3. A third set of effects is simply taking the average of all the treatment
effects at a given time period. Let’s denote these set of weights
wt(d, d′, τ, τ ′) for the effect observed at period t. Then, we have
∆Yt
DID =

∑
τ+d=t,d′>d+τ,τ ′ w

t(d, d′, τ, τ ′)∆Y
DID(d, d′, τ, τ ′). Another

version again uses only estimates taken with period d− τ ′ as a reference:
∆Yt
DID(τ ′) =

∑
τ+d=t,d′>d+τ w

t
τ ′(d, d′, τ)∆Y

DID(d, d′, τ, τ ′).
4. Finally, one can simply define the overall effect of the treatment

on the treated as the sum of all relevant treatment effects esti-
mated in the sample. Let’s define the set of weights wa(d, d′, τ, τ ′)
and the estimate of the average treatment effect on the treated as
∆Y
DID =

∑
τ,d,d′>d+τ,τ ′ w

a(d, d′, τ, τ ′)∆Y
DID(d, d′, τ, τ ′). Again, some

authors restrict this estimate to be specific to a given reference period:
∆Y
DID(τ ′) =

∑
τ,d,d′>d+τ w

a
τ ′(d, d′, τ)∆Y

DID(d, d′, τ, τ ′).

As a consequence of Theorem 4.13, all the aggregate treatment effects are
identified, as long as each of their separate components are identified. The
following corollary makes that clear:
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Corollary 4.3 (DID identifies Weighted TT). Under Assumptions 4.18, 4.19
and 4.20, assuming that Pr(Di = d) > 0 and Pr(Di = d′) > 0, ∀(d, d′) ∈
{1, 2, . . . , T,∞} such that wk(d, d′, τ, τ ′) > 0 and assuming that ∀d, d′, τ, τ ′ such
that wk(d, d′, τ, τ ′) > 0, (d + τ, d′ − τ ′) ∈ {1, 2, . . . , T,∞}2, the weighted DID
estimator identifies the corresponding weigthed average of Treatment on the
Treated:

∆Y
DID(k) = ∆Y

TT (k),

with

∆Y
TT (k) =

∑
wk(d, d′, τ, τ ′)∆Yτ

TTd

Proof. The proof follows from Theorem 4.13: as long as the groups for which the
weights are non null exist, and the time periods for which the weights are non
null also exist in the data, Theorem 4.13 ensures that each of the components of
the weighted average is identifed and thus the weighted average is identified as
well.

Before going through an example to illustrate all of these notions, let me introduce
one estimator.

4.3.3.2 Estimation

Estimation of the various DID estimators that we have defined in the previous
section can take several forms. The simplest form estimates the separate individ-
ual DID components using the methods seen in Section 4.3.1, and then manually
computes their weighted averages. I will detail this approach first. A very similar
approach uses the estimates obtained with one reference period (in general
τ ′ = 1) and combines them to obtain one treatment effect or a series of treatment
effects around the treatment date. This approach has been proposed by Sun
and Abraham (2021) and by Callaway and Sant’Anna (2021). A more intricate
approach uses an imputation model to derive the predicted counterfactual values
for all treated observations and then averages them. This approach has been
proposed by Borusyak, Jaravel and Speiss (2021), Liu, Wang and Xu (2021) and
Gardner (2021). de Chaisemartin and d’Haultfoeuille (2020) propose to only
use changes that occur around the treatment date. Finally, one could use the
Two Way Fixed Effects model presented in Section 4.3.1, combining all the time
periods in a single estimator. Recent work by Goodman-Bacon (2021) has shown
that this approach is only valid under much more restrictive assumptions than
the ones stated in Corollary 4.3. The main reason for why it is so is that the
Two Way Fixed Effects estimator combines individual DID and DIDr estimates,
thereby generating strong biases if the assumptions that ensure the validity of
DIDr are not valid. An extension to the Two Way Fixed Effects estimator, the
stacked DID estimator, restores its good properties. It has been proposed by

https://www.sciencedirect.com/science/article/pii/S030440762030378X
https://www.sciencedirect.com/science/article/pii/S030440762030378X
https://www.sciencedirect.com/science/article/pii/S0304407620303948
http://arxiv.org/abs/2108.12419
http://arxiv.org/abs/2107.00856
https://jrgcmu.github.io/2sdd_current.pdf
https://www.aeaweb.org/articles?id=10.1257/aer.20181169
https://www.sciencedirect.com/science/article/pii/S0304407621001445
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Cengiz, Dube, Lindner and Zipperer (2019) and extended by Gardner (2021).
The R packages required to implement all of these estimators are listed on Asjad
Naqvi’s DID webpage. We are going to see how they perform on our data.

4.3.3.2.1 Using weighted averages of individual DID estimators
This estimator is pretty simple to define. Simply take all the possible 2 × 2
possible DID estimators ∆Y

DID(d, d′, τ, τ ′), with τ, τ ′ > 0 and d′ > d + τ , and
then average them using the pre-defined weights wk(d, d′, τ, τ ′) of your choice.
The key to this section is to illustrate how to operationalize this approach in
practice with an example. Let’s go.

Example 4.30. The key here is first to generate some data.

We are going to have four successive time periods, 1, 2, 3, and 4. At each of
these time periods, some units start receiving the treatment, generating four
treatment groups: Di ∈ {1, 2, 3, 4}. Let us write a model compatible with this
setting, choose a parameterization and generate the data.

y1
i,t = y0

i,t + ᾱt +
∑
d

(ᾱt,d + θdµi)1[Di,d = 1] + ηi,t

y0
i,t = µi + δt + U0

i,t

U0
i,t = ρU0

i,t−1 + εi,t

Di,t = 1[y0
i,1 + ξt + Vi ≤ ȳ]

Vi = γ(µi − µ̄) + ωi,1

U0
i,1 ∼ N (0, σ2

U )
(ηi,t, ωi,t) ∼ N (0, 0, σ2

η, σ
2
ω, ρη,ω)

εi,t ∼ N (0, σ2
ε ).

I am going to parameterize the ᾱt,d process in order to avoid having to specify
the 14 parameters that it otherwise would require. The parameterization I am
choosing is ᾱt,d = χ̄d + κd(t − d)1[t ≥ d], so that treatment effects increase
linearly as time into the treatment increases. Let us now choose some parameter
values:
param <- c(8,.5,.28,1500,0.9,

0.01,0.01,0.01,0.01,
0.05,0.05,
0,0.1,0.2,0.3,
0.05,0.1,0.15,0.2,
0.25,0.1,0.05,0,
1.5,1.25,1,0.75,
0.5,0,-0.5,-1,
0.1,0.28,0)

https://academic.oup.com/qje/article/134/3/1405/5484905
https://jrgcmu.github.io/2sdd_current.pdf
https://asjadnaqvi.github.io/DiD/docs/02_R/
https://asjadnaqvi.github.io/DiD/docs/02_R/
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names(param) <- c("barmu","sigma2mu","sigma2U","barY","rho",
"theta1","theta2","theta3","theta4",
"sigma2epsilon","sigma2eta",
"delta1","delta2","delta3","delta4",
"baralpha1","baralpha2","baralpha3","baralpha4",
"barchi1","barchi2","barchi3","barchi4",
"kappa1","kappa2","kappa3","kappa4",
"xi1","xi2","xi3","xi4",
"gamma","sigma2omega","rhoetaomega")

Let us now generate the corresponding data (in long format):
set.seed(1234)
N <- 1000
T <- 4
cov.eta.omega <- matrix(c(param["sigma2eta"],param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["sigma2omega"]),ncol=2,nrow=2)
data <- as.data.frame(mvrnorm(N*T,c(0,0),cov.eta.omega))
colnames(data) <- c('eta','omega')
# time and individual identifiers
data$time <- c(rep(1,N),rep(2,N),rep(3,N),rep(4,N))
data$id <- rep((1:N),T)
# unit fixed effects
data$mu <- rep(rnorm(N,param["barmu"],sqrt(param["sigma2mu"])),T)
# time fixed effects
data$delta <- c(rep(param["delta1"],N),rep(param["delta2"],N),rep(param["delta3"],N),rep(param["delta4"],N))
data$baralphat <- c(rep(param["baralpha1"],N),rep(param["baralpha2"],N),rep(param["baralpha3"],N),rep(param["baralpha4"],N))

# building autocorrelated error terms
data$epsilon <- rnorm(N*T,0,sqrt(param["sigma2epsilon"]))
data$U[1:N] <- rnorm(N,0,sqrt(param["sigma2U"]))
data$U[(N+1):(2*N)] <- param["rho"]*data$U[1:N] + data$epsilon[(N+1):(2*N)]
data$U[(2*N+1):(3*N)] <- param["rho"]*data$U[(N+1):(2*N)] + data$epsilon[(2*N+1):(3*N)]
data$U[(3*N+1):(T*N)] <- param["rho"]*data$U[(2*N+1):(3*N)] + data$epsilon[(3*N+1):(T*N)]
# potential outcomes in the absence of the treatment
data$y0 <- data$mu + data$delta + data$U
data$Y0 <- exp(data$y0)
# treatment timing
# error term
data$V <- param["gamma"]*(data$mu-param["barmu"])+data$omega
# treatment group, with 99 for the never treated instead of infinity
Ds <- if_else(data$y0[1:N]+param["xi1"]+data$V[1:N]<=log(param["barY"]),1,

if_else(data$y0[1:N]+param["xi2"]+data$V[1:N]<=log(param["barY"]),2,
if_else(data$y0[1:N]+param["xi3"]+data$V[1:N]<=log(param["barY"]),3,

if_else(data$y0[1:N]+param["xi4"]+data$V[1:N]<=log(param["barY"]),4,99))))
data$Ds <- rep(Ds,T)
# Treatment status
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data$D <- if_else(data$Ds>data$time,0,1)
# potential outcomes with the treatment
# effect of the treatment by group
data$baralphatd <- if_else(data$Ds==1,param["barchi1"],

if_else(data$Ds==2,param["barchi2"],
if_else(data$Ds==3,param["barchi3"],

if_else(data$Ds==4,param["barchi4"],0))))+
if_else(data$Ds==1,param["kappa1"],

if_else(data$Ds==2,param["kappa2"],
if_else(data$Ds==3,param["kappa3"],

if_else(data$Ds==4,param["kappa4"],0))))*(data$t-data$Ds)*if_else(data$time>=data$Ds,1,0)
data$y1 <- data$y0 + data$baralphat + data$baralphatd + if_else(data$Ds==1,param["theta1"],if_else(data$Ds==2,param["theta2"],if_else(data$Ds==3,param["theta3"],param["theta4"])))*data$mu + data$eta
data$Y1 <- exp(data$y1)
data$y <- data$y1*data$D+data$y0*(1-data$D)
data$Y <- data$Y1*data$D+data$Y0*(1-data$D)

Let us now plot the data, especially the potential outcomes for each group.
dataplotDIDStaggered <- data %>%

group_by(Ds,time) %>%
summarize(
y1=mean(y1),
y0=mean(y0)

) %>%
pivot_longer(cols=c("y1","y0"),values_to="Outcome",names_to="PotentialOutcome") %>%
mutate(
TreatmentDate = factor(Ds,levels=c("99","4","3","2","1"))

)

ggplot(dataplotDIDStaggered,aes(x=time,y=Outcome,color=TreatmentDate,shape=TreatmentDate,linetype=PotentialOutcome))+
geom_line() +
geom_point()+

# scale_linetype_discrete(guide='none') +
theme_bw()

Figure 4.14 shows that the first units to be treated have the lowest potential
outcomes in the absence of the treatment (y0, in full line), and that each successive
cohort entering the treatment over time has increasingly large potential outcomes.
Assumption 4.20 seems to hold in this dataset, at least visually: the trends in
potential outcomes in the absence of the treatment seem to be rather parallel to
each other in each group. Once a group of unit has entered the treatment, it
experiences an increase in outcomes that grows over time. Finally, note that we
will be unable to estimate the impact on the group with Di = 1 since they enter
the treatment at the first period.

Let us now compute each possible DID estimator on this dataset. In order to
save some space and time, we will start by focusing on group 2. Group 2 starts
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Figure 4.14: Evolution of average outcomes in the various treatment groups
defined by their date of entry into the treatment

treatment at period 2, and thus only period 1 can be used for building a DID
estimator. But several comparison groups exist: the never treated (note that
we have used Di = 99 instead of Di = ∞ to characterize this group, in order
to make it simpler to manipulate it in R) but also group 3, that can serve as
an untreated benchmark between periods 1 and 2, and group 4, which can be
used as an untreated benchmark in periods 1, 2 and 3. Let’s compute all these
effects. In order to make our lives simpler, we are going to generate a function
to generate ∆̂Y

DID(d, d′, τ, τ ′).
# StaggeredDID22 is a function that takes as inputs:
# y: name of outcome variable (character)
# D: name of treatment group variable (character)
# d: treatment group defined by date of entry into the treatment
# dprime: comparison group
# tau: number of periods after treatment date at which we estimate the effect of the treatment
# tauprime: number of periods before the treatment date that we use a baseline period (defaults to one)
# t: time indicator (character)
# i: individual unit indicator (character)
# data: dataset containing the outcomes and treatments and time and unit indicators
StaggeredDID22 <- function(tau,y,D,d,dprime,tauprime=1,t,i,data){

# taking out the irrelevant groups and time periods and generating a useful treatment variable
data.DID <- data %>%

filter(!!sym(D)==d | !!sym(D)==dprime) %>%
filter(time==d+tau | time==d-tauprime) %>%
mutate(
Dit = if_else(!!sym(D)==d & time==d+tau,1,0)

)
# running the within estimator (fixest)
# regression formula
DID.form <- as.formula(paste(paste(y,paste("Dit",t,sep="+"),sep="~"),i,sep="|"))
reg.W.fixest <- feols(DID.form, data = data.DID)
# result vector
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DID.est.W.fixest <- c(d,dprime,tau,tauprime,coef(reg.W.fixest)[[1]],sqrt(vcov(reg.W.fixest)[[1,1]]))
names(DID.est.W.fixest) <- c("d","dprime","tau","tauprime","DIDest","DIDse")
return(DID.est.W.fixest)

}

# Run the regression and keep results
# D=99 as benchmark
# list of tau for d=2 and dprime=99 and tauprime=1
tau.2.99 <- c(0,1,2)
DID.2.99.1 <- map_dfr(tau.2.99,StaggeredDID22,y='y',D='Ds',d=2,dprime=99,tauprime=1,t="time",i="id",data=data)
# D=3
# list of tau for d=2 and dprime=3 and tauprime=1
tau.2.3 <- c(0)
DID.2.3.1 <- map_dfr(tau.2.3,StaggeredDID22,y='y',D='Ds',d=2,dprime=3,tauprime=1,t="time",i="id",data=data)
# D=4
# list of tau for d=2 and dprime=4 and tauprime=1
tau.2.4 <- c(0,1)
DID.2.4.1 <- map_dfr(tau.2.4,StaggeredDID22,y='y',D='Ds',d=2,dprime=4,tauprime=1,t="time",i="id",data=data)

# regroup results
DID.2.1 <- rbind(DID.2.99.1,DID.2.3.1,DID.2.4.1)

# true effects (in the sample)
ATT.2.0 <- mean(data$y1[data$Ds==2 & data$time==2])-mean(data$y0[data$Ds==2 & data$time==2])
ATT.2.1 <- mean(data$y1[data$Ds==2 & data$time==3])-mean(data$y0[data$Ds==2 & data$time==3])
ATT.2.2 <- mean(data$y1[data$Ds==2 & data$time==4])-mean(data$y0[data$Ds==2 & data$time==4])

Let us now plot the results for the DID estimates on group 2 using τ ′ = 1 as a
benchmark pre-treatment period.
# preparing data
DID.2.1 <- DID.2.1 %>%

mutate(
dprime=factor(dprime,levels=c("99","4","3","2","1"))

)

# plot
ggplot(DID.2.1,aes(x=tau,y=DIDest,colour=dprime,linetype=dprime))+

geom_line() +
geom_pointrange(aes(ymin=DIDest-1.96*DIDse,ymax=DIDest+1.96*DIDse))+
ylab("DID estimate") +
xlab("Time after treatment (tau)") +
scale_x_continuous(breaks=c(0,1,2)) +
expand_limits(y=0) +
scale_colour_discrete(name="Comparison\ngroup")+
scale_linetype_discrete(name="Comparison\ngroup")+
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theme_bw()
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Figure 4.15: DID estimates for Group 2 at various time periods after the treament
and with various comparison groups and with the reference period τ ′ = 1

Figure 4.15 shows the ∆̂Y
DID(d, d′, τ, τ ′) estimates for d = 2 and τ ′ = 1, varying

both τ and d′. The treatment effects estimated using different reference groups
are similar to each other when we can compare them. Moreover, the treatment
effect grows with time, as expected from Figure 4.14. The true effects of the
treatment on group 2 are, in our sample: ∆̂Y0

TT2
= 0.31, ∆̂Y1

TT2
= 1.56 and ∆̂Y2

TT2
=

2.86. These are very close to our DID estimates. For example, ∆̂Y
DID(2, 99, 0, 1) =

0.37, while ∆̂Y
DID(2, 4, 0, 1) = 0.31 and ∆̂Y

DID(2, 3, 0, 1) = 0.3, which are all pretty
close to ∆̂Y0

TT2
= 0.31. ∆̂Y

DID(2, 99, 1, 1) = 1.65, while ∆̂Y
DID(2, 4, 1, 1) = 1.57,

which are also all pretty close to ∆̂Y1
TT2

= 1.56. Finally, ∆̂Y
DID(2, 99, 2, 1) = 2.99,

while ∆̂Y2
TT2

= 2.86.

In order to aggregate the estimates presented in Figure 4.15, we could for example
use the proportion of each comparison group in the sample and average the
treatment effects for each post treatment period τ with these weights. We can
do the same thing with groups 3 and 4 and see what happens. Note that with
these two groups, I can also estimate a placebo test: that is the effect of the
treatment before the treatment takes place. Such event study estimates have
become standard in the DID literature. I will expand on these tests in Section
8. For group 3, I can estimate the effect for τ ∈ {−2, 0, 1} and for group 4, for
τ ∈ {−3,−2, 0}, when the benchmark group is the never treated group.
# do the DID22 estimates for d=3
# Run the regression and keep results
# D=99 as benchmark
# list of tau for d=3 and dprime=99 and tauprime=1
tau.3.99 <- c(-2,0,1)
DID.3.99.1 <- map_dfr(tau.3.99,StaggeredDID22,y='y',D='Ds',d=3,dprime=99,tauprime=1,t="time",i="id",data=data)
# D=4 as a benchmark
# list of tau for d=3 and dprime=4 and tauprime=1
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tau.3.4 <- c(-2,0)
DID.3.4.1 <- map_dfr(tau.3.4,StaggeredDID22,y='y',D='Ds',d=3,dprime=4,tauprime=1,t="time",i="id",data=data)

# regroup results
DID.3.1 <- rbind(DID.3.99.1,DID.3.4.1)

# true effects (in the sample)
ATT.3.0 <- mean(data$y1[data$Ds==3 & data$time==3])-mean(data$y0[data$Ds==3 & data$time==3])
ATT.3.1 <- mean(data$y1[data$Ds==3 & data$time==4])-mean(data$y0[data$Ds==3 & data$time==4])

# do the DID22 estimates for d=4
# Run the regression and keep results
# D=99 as benchmark
# list of tau for d=4 and dprime=99 and tauprime=1
tau.4.99 <- c(-3,-2,0)
DID.4.99.1 <- map_dfr(tau.4.99,StaggeredDID22,y='y',D='Ds',d=4,dprime=99,tauprime=1,t="time",i="id",data=data)

# true effects (in the sample)
ATT.4.0 <- mean(data$y1[data$Ds==4 & data$time==4])-mean(data$y0[data$Ds==4 & data$time==4])

# regrouping all effects
DID.1 <- rbind(DID.2.1,DID.3.1,DID.4.99.1)

# computing the weights
prop.groups.DID <- data %>%

filter(time==1) %>%
group_by(Ds) %>%
summarize(
prop.group = n()/N

) %>%
rename(
dprime=Ds

)%>%
mutate(
dprime=factor(dprime,levels=c("99","4","3","2","1"))

)

# joining the weights to the results
DID.1 <- DID.1 %>%

left_join(prop.groups.DID,by=c("dprime"))

# generating the weighted averages by tau
DID.tau <- DID.1 %>%

mutate(
w.ATT = prop.group*DIDest
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) %>%
group_by(tau,d) %>%
summarize(
sum.w.ATT = sum(w.ATT),
sum.w = sum(prop.group)

) %>%
mutate(
ATT.tau = sum.w.ATT/sum.w

) %>%
select(d,tau,ATT.tau) %>%
mutate(
d=factor(d,levels=c("2","3","4"))

)

# adding the reference period
DID.ref <- as.data.frame(rbind(c(2,-1,0),c(3,-1,0),c(4,-1,0)))
colnames(DID.ref) <- colnames(DID.tau)
DID.ref$d <- factor(DID.ref$d,levels=c("2","3","4"))

DID.tau <- rbind(DID.tau,DID.ref)

Let us now plot the results for the DID estimates in groups 2, 3 and 4 using
τ ′ = 1 as a benchmark pre-treatment period and aggregating the estimates using
every possible valid control group:
ggplot(DID.tau,aes(x=tau,y=ATT.tau,colour=d,linetype=d))+

geom_line() +
geom_point() +
ylab("DID estimate") +
xlab("Time after treatment (tau)") +
scale_x_continuous(breaks=c(-3,-2,-1,0,1,2)) +
expand_limits(y=0) +
scale_colour_discrete(name="Treatment\ngroup")+
scale_linetype_discrete(name="Treatment\ngroup")+
theme_bw()

On Figure 4.16, we can see that all the estimators are comparable for each
other at each time period τ , no matter the treatment group. We thus can
aggregate the impacts at each period τ across all treatment groups. There are
two ways to do that: one is to use all the groups for which we observe the effect
of the treatment at period τ . The drawback of this approach is that group
composition changes with τ . For example, on Figure 4.16, we can see that the
treatment group treated in the last period (for which Di = 4) contributes only
to the computation of the effect of the treatment at period τ = 0. This is
because we cannot observe what happens to this group in later periods with our
dataset. As a consequence, in period τ = 0, all three groups–Di = 2, Di = 3
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Figure 4.16: DID estimates for all groups at various time periods after the
treament aggregated across all comparison groups and with the reference period
τ ′ = 1

and Di = 4–contribute to the estimation of the effect of the treatment, whereas
only groups with Di = 2 and Di = 3 contribute to the estimation of the effect
at τ = 1, and only Di = 2 contributes to estimating the effect at τ = 2. If
treatment effects were heterogeneous across treatment groups, this change in
group composition would confound actual changes in the magnitude of treatment
effects. Since the effect of the treatment is rather homogenous across groups,
this group comopsition problem will not matter in our application. Nevertheless,
we are still going to estimate the effect of the treatment at τ = 0 and τ = 1
maintaining group composition constant (Di = 2 and Di = 3). In our application,
both approaches will yield very similar results. The weights we are going to use
for our aggregation are the proportions of units belonging to each group.
# joining the weights to the results
DID.tau <- DID.tau %>%

left_join(prop.groups.DID,by=c("d"="dprime"))

# generating the weighted averages by tau (varying group composition)
DID.tau.agg <- DID.tau %>%

mutate(
w.ATT = prop.group*ATT.tau

) %>%
group_by(tau) %>%
summarize(
sum.w.ATT = sum(w.ATT),
sum.w = sum(prop.group)

) %>%
mutate(
ATT.tau.agg = sum.w.ATT/sum.w

) %>%
select(tau,ATT.tau.agg) %>%
mutate(
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Composition="Varying"
)

# generating the weighted averages by tau (constant group composition)
DID.tau.agg.cst <- DID.tau %>%

filter(d==2 | d==3) %>%
filter(tau==0 | tau==1) %>%
mutate(
w.ATT = prop.group*ATT.tau

) %>%
group_by(tau) %>%
summarize(
sum.w.ATT = sum(w.ATT),
sum.w = sum(prop.group)

) %>%
mutate(
ATT.tau.agg = sum.w.ATT/sum.w

) %>%
select(tau,ATT.tau.agg) %>%
mutate(
Composition="Constant"

)

#regrouping estimates
DID.tau.agg.tot <- rbind(DID.tau.agg,DID.tau.agg.cst) %>%

mutate(
Composition = factor(Composition,levels=c("Constant","Varying"))

)

Let’s plot the resulting estimates.
ggplot(DID.tau.agg.tot,aes(x=tau,y=ATT.tau.agg,colour=Composition,linetype=Composition))+

geom_line() +
geom_point() +
ylab("DID estimate") +
xlab("Time after treatment (tau)") +
scale_x_continuous(breaks=c(-3,-2,-1,0,1,2)) +
expand_limits(y=0) +
scale_colour_discrete(name="Group\ncomposition")+
scale_linetype_discrete(name="Group\ncomposition")+
theme_bw()

As expected, Figure 4.17 confirms that group composition does not play an
important role in treatment effect heterogeneity: there actually is a true hetero-
geneity along the time dimension: the treatment effect seems to increase linearly
over time (as we suspected it would, since we parameterized our model just like
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Figure 4.17: DID estimates at various time periods after the treament aggre-
gated across all treatment groups and maintaining treatment group composition
constant (reference period τ ′ = 1)

it).

Another plot that might prove very helpful is the one combining the aggregated
estimates obtained in Figure 4.17 with the estimates obtained on each subgroup.
This plot helps understand the source of heterogeneity in the profile of the aggre-
gated treatment effects by attributing it to true treatment effect heterogeneity
or to changes in group composition. Let’s go:
# building the dataset
DID.tau.agg.tot.inter <- DID.tau.agg.tot %>%

filter(Composition=="Varying") %>%
select(tau,ATT.tau.agg) %>%
rename(
ATT.tau=ATT.tau.agg

) %>%
mutate(
d = "Aggregate",
prop.group=0

)

DID.tau <- rbind(DID.tau,DID.tau.agg.tot.inter) %>%
mutate(
d=factor(d,levels=c("2","3","4","Aggregate"))

)

# plotting the result
ggplot(DID.tau,aes(x=tau,y=ATT.tau,colour=d,linetype=d))+

geom_line() +
geom_point() +
ylab("DID estimate") +
xlab("Time after treatment (tau)") +
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scale_x_continuous(breaks=c(-3,-2,-1,0,1,2)) +
expand_limits(y=0) +
scale_colour_discrete(name="Group\ncomposition")+
scale_linetype_discrete(name="Group\ncomposition")+
theme_bw()
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Figure 4.18: DID estimates at various time periods after the treament aggregated
across all treatment groups (reference period τ ′ = 1)

Finally, let us aggregate all treatment effects from all periods into one unique
estimate. It is not an easy feat, especially in our current example which exhibits
lots of treatment effect heterogeneity over τ . Should we simply aggregate all
treatment effect estimates using equal weights for each period τ or, rather, should
we try to reflect the actual composition of treated groups and time periods in
the sample? The choice of the mode of aggregation might make a huge difference
to the eventual result, since giving more weights to higher τ will result in a much
higher overall treatment effect. Let’s see what happens with both approaches.
# aggregating by weighing equally each time period tau
ATT.equal <- DID.tau.agg.tot %>%

filter(Composition=="Varying",tau>=0) %>%
summarize(
ATT.equal = mean(ATT.tau.agg)

) %>%
pull(ATT.equal)

# aggregating by weighing as a proportion of time spent by each group in the treatment state
ATT.varying <- DID.tau %>%

ungroup() %>%
filter(d!="Aggregate",tau>=0) %>%
mutate(
w.ATT = prop.group*ATT.tau

) %>%
summarize(
sum.w.ATT = sum(w.ATT),
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sum.w = sum(prop.group)
) %>%
mutate(
ATT.varying = sum.w.ATT/sum.w

) %>%
pull(ATT.varying)

The average effect of the treatment, giving equal weight to each time period
τ ∈ {0, 1, 2}, is equal to ∆̂Y

TT (e) = 1.59, where e stands for “equal” weights. The
average effect of the treatment, giving weights proportional to group composition
and time spent in the treatment is equal to ∆̂Y

TT (v) = 1.06, where v stands for
“varying” weights.

4.3.3.2.2 Direct weighting using one reference period and one refer-
ence group (Sun and Abraham) OK, so now, we know how to compute
the various DID estimators by hand and how to aggregate them. Is there a way
to obtain directly an aggregated estimate with an R package? Yes, actually,
plenty of such estimator exist. They are listed on Asjad Naqvi’s DID webpage.
Let’s start with the ones implementing the Sun and Abraham (2021) estimator.
Sun and Abraham (2021)’s estimator start with estimating a Two Way Fixed
Effect model with a rich dynamic specification:

Yi,t = µi + δt +
T∑
d=2

∑
τ 6=−1

βSAd,τ 1[Di = d ∧ t = d+ τ ] + εSAi,t ,

on the sample excluding the always treated individuals (Di = 1). In order to
be consistent with previous estimators, we are going to start using the fixest
package to obtain our estimator. In order to be able to estimate Sun and Abraham
(2021)’s estimator with fixest, we simply are going to add a sunab(d,t) term
to the feols command, with the first term giving the treatment group and the
second term the time fixed effect. We then can aggregate the estimated terms
using regexp in order to detect the string patterns.

Example 4.31. Let’s go:
# regression
reg.fixest.SA.Agg <- feols(y ~ sunab(Ds,time)| id + time, data=filter(data,Ds>1))

# aggregate estimate (this is a command specific to fixest that aggregates various coefficients where an i. specification was used)
# The selection of coefficients to aggregate uses a string detection pattern language
# varying composition
aggregate.SA.varying <- aggregate(reg.fixest.SA.Agg, c("tau" = "time::([[:digit:]]+)"))

# another approach using the i function: not run, but works

https://asjadnaqvi.github.io/DiD/docs/02_R/
https://doi.org/10.1016/j.jeconom.2020.09.006
https://doi.org/10.1016/j.jeconom.2020.09.006
https://doi.org/10.1016/j.jeconom.2020.09.006
https://doi.org/10.1016/j.jeconom.2020.09.006
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# creating a time to treatment variable:
# data <- data %>%
# mutate(
# tau=time-Ds
# ) %>%
# mutate(
# tau = replace(tau,tau<=-90,-99)
# )

# regression
# reg.fixest.SA.nonAgg <- feols(y ~ i(tau,i.Ds,ref=c(-1,-99))| id + time, data=filter(data,Ds>1))
# aggregate estimate (this is a command specific to fixest that aggregates various coefficients where an i. specification was used)
# The selection of coefficients to aggregate uses a string detection pattern language
# varying composition
# aggregate.SA.nonAgg.varying <- aggregate(reg.fixest.SA.nonAgg, c("tau" = "tau::([[:digit:]]+)"))

Let’s plot the results:
# preparation
colnames(aggregate.SA.varying) <- c("ATT","Se","t","pval")
aggregate.SA.varying <- aggregate.SA.varying %>%

as.data.frame(.) %>%
mutate(tau = 0:2)

# plot
ggplot(aggregate.SA.varying,aes(x=tau,y=ATT))+

geom_line() +
geom_pointrange(aes(ymin=ATT-1.96*Se,ymax=ATT+1.96*Se)) +
ylab("DID estimate") +
xlab("Time after treatment (tau)") +
scale_x_continuous(breaks=c(0,1,2)) +
expand_limits(y=0) +
scale_colour_discrete(name="Group\ncomposition")+
scale_linetype_discrete(name="Group\ncomposition")+
theme_bw()

Again, as we have seen before, the change in group composition makes it look
like there is a trend break in the treatment effect. What we would need is to
aggregate treatment effects with a constant group composition. One way to do
that would be to use the full disaggregated results of the Sun and Abraham
decomposition and to reaggregate them in another way. In order to access the
disaggregated results of the Sun and Abraham regression, we need to use the
option agg=FALSE in the coef and se commands. Let’s see how this works.
# Disaggregate estimates
disaggregate.SA <- as.data.frame(cbind(coef(reg.fixest.SA.Agg,agg=FALSE),se(reg.fixest.SA.Agg,agg=FALSE)))
colnames(disaggregate.SA) <- c('Coef','Se')
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Figure 4.19: DID estimates at various time periods after the treament using Sun
and Abraham’s estimator implemented by fixest (reference period τ ′ = 1)

# adding treatment groups and time to treatment
disaggregate.SA <- disaggregate.SA %>%

mutate(test = names(coef(reg.fixest.SA.Agg,agg=FALSE))) %>%
mutate(
Group = factor(str_sub(test,-1),levels=c('1','2','3','4','Aggregate')),
TimeToTreatment = factor(if_else(str_detect(test,"\\-"),str_extract(test,"\\-[[:digit:]]"),str_extract(test,"[[:digit:]]")),levels=c('-3','-2','-1','0','1','2'))

) %>%
select(-test)

# adding reference period
Group <- c('2','3','4')
TimeToTreatment <- rep('-1',3)
ref.dis <- as.data.frame(cbind(Group,TimeToTreatment)) %>%

mutate(
Coef = 0,
Se = 0,
Group = factor(Group,levels=c('1','2','3','4','Aggregate')),
TimeToTreatment = factor(TimeToTreatment,levels=c('-3','-2','-1','0','1','2'))
)

disaggregate.SA <- rbind(disaggregate.SA,ref.dis)

# adding aggregate results
# aggregate estimates
aggregate.SA <- as.data.frame(cbind(coef(reg.fixest.SA.Agg),se(reg.fixest.SA.Agg)))
colnames(aggregate.SA) <- c('Coef','Se')
# adding treatment groups and time to treatment
aggregate.SA <- aggregate.SA %>%

mutate(test = names(coef(reg.fixest.SA.Agg))) %>%
mutate(
Group = factor(rep("Aggregate",5),levels=c('1','2','3','4','Aggregate')),
TimeToTreatment = factor(if_else(str_detect(test,"\\-"),str_extract(test,"\\-[[:digit:]]"),str_extract(test,"[[:digit:]]")),levels=c('-3','-2','-1','0','1','2'))
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) %>%
select(-test)

# adding reference period
Group <- c("Aggregate")
TimeToTreatment <- rep('-1',1)
ref <- as.data.frame(cbind(Group,TimeToTreatment)) %>%

mutate(
Coef = 0,
Se = 0,
Group = factor(Group,levels=c('1','2','3','4','Aggregate')),
TimeToTreatment = factor(TimeToTreatment,levels=c('-3','-2','-1','0','1','2'))
)

disaggregate.SA <- rbind(disaggregate.SA,aggregate.SA,ref) %>%
mutate(TimeToTreatment = as.numeric(as.character(TimeToTreatment)))

Let’s plot the result:
ggplot(disaggregate.SA,aes(x=TimeToTreatment,y=Coef,colour=Group,linetype=Group))+

geom_line() +
geom_pointrange(aes(ymin=Coef-1.96*Se,ymax=Coef+1.96*Se)) +
ylab("DID estimate") +
xlab("Time relative to treatment") +
scale_x_continuous(breaks=c(-3,-2,-1,0,1,2)) +
expand_limits(y=0) +
scale_colour_discrete(name="Treatment\ngroup")+
scale_linetype_discrete(name="Treatment\ngroup")+
theme_bw()
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Figure 4.20: Disaggregated DID estimates around the treatment date estimated
using the Sun and Abraham procedure in fixest (reference period τ ′ = 1)

Figure 4.20 shows very well how the Sun and Abraham estimator works: it
aggregates each group specific treatment effect (relative to the reference period
τ ′ = −1 and to the reference group (Di = ∞)) with period-specific weights
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which depend on the proportion of each treated group among the treated at this
period. As a result, some dynamic changes in treatment effects might be driven
by changes in group composition and not by genuine changes in the effect of
the treatment. This is the case in Figure 4.20 between periods 1 and 2 where
the acceleration in the growth of the aggregated treatment effect is due to the
disappearance of group 3, which has a lower speed of increase of its average
treatment effect, at period 2. As it is always tricky to interpret the aggregated
result, I suggest to always plot the disaggregated results on the same graph, as
in Figure 4.20.

Let us finally compute the aggregated effect:
ATT.agg.SA <- aggregate(reg.fixest.SA.Agg, c("ATT" = "time::[ˆ-]"))

The aggregated effect estimated using the Sun and Abraham approach as imple-
mented in fixest is equal to 1.07 ± 0.04.

Remark. Sun and Abraham’s estimator can also be formulated in repeated cross
sections by estimating the following model by OLS:

Yi,t = α+
T∑
d=2

µd1[Di = d] +
T∑
τ=2

δτ1[t = τ ] +
T∑
d=2

∑
τ 6=−1

βSAd,τ 1[Di = d ∧ t = d+ τ ] + εSAi,t .

Remark. We can also show that Sun and Abraham’s estimator is equal to our
individual DID estimators in the population:

Theorem 4.14 (Sun and Abraham estimator is equivalent to individual DID
in the population). In the population, Sun and Abraham’s estimator (formu-
lated in a panel and in a repeated cross section) is equal to the individual
DID estimators using the never treated as the comparison group and the period
just before receiving the treatment as the reference period: ∀d ∈ {2, . . . , T},
∀τ ∈ {−(T − 1), . . . , T − 2} \ {−1},

βSAd,τ = ∆Y
DID(d,∞, τ, d− 1).

Proof. See Section A.3.3.

Remark. We can also show that Sun and Abraham’s estimator is equal to our
individual DID estimators in the sample:

Theorem 4.15 (Sun and Abraham estimator is equivalent to individual DID
in the sample). In the sample, Sun and Abraham’s estimator (estimated by OLS
in repeated cross sections or in panel data or by OLS using the Least Squares
Dummy Variables model, the Within transformation or the First Difference
transformation relative to d − 1 in panel data) is equal to the individual DID
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estimators using the never treated as the comparison group and the period
just before receiving the treatment as the reference period: ∀d ∈ {2, . . . , T},
∀τ ∈ {−(T − 1), . . . , T − 2} \ {−1},

β̂SAd,τ =
∑Nd+τ
i=1 Yi,d+τ1[Di = d]∑Nd+τ

i=1 1[Di = d]
−
∑Nd−1
i=1 Yi,d−11[Di = d]∑Nd−1

i=1 1[Di = d]

−

(∑Nd+τ
i=1 Yi,d+τ1[Di =∞]∑Nd+τ

i=1 1[Di =∞]
−
∑Nd−1
i=1 Yi,d−11[Di =∞]∑Nd−1

i=1 1[Di =∞]

)

Proof. See Section A.3.4.

Remark. The First Difference transformation of the Sun and Abraham model
that is equivalent to the individual DID estimator is not a standard first difference
where observations observed at date t− 1 are subtracted from observations at
t. The correct First Difference transformation is relative to d − 1: the OLS
regression is performed on the following model, restricted to the sample where
Di = d or Di =∞ and Ti = t or Ti = d− 1:

Yi,d+τ − Yi,d−1 = αFDd,τ + βFDd,τ 1[Di = d] + εFDi,t .

Example 4.32. In order to see how Theorem 4.15 works in practice, let us
collect all the estimated effects obtained thanks to our separate individual DID
estimators and compare them with the coefficients of Sun and Abraham’s model.

We are going to compare the coefficients in the Sun and Abraham model to
the DID estimates that compare each treated group to the never treated group,
since the Sun and Abraham estimator do not use the observations belonging to
groups that eventually get treated as controls when they are not yet treated.
# reorganize the DID estimator
DID.1.mod <- DID.1 %>%

filter(dprime=="99") %>% # keep only never treated as counterfactuals
rename(
TimeToTreatment=tau,
Group=d

) %>%
mutate(
Group=factor(Group,levels=c("1","2","3","4","Aggregate")),
TimeToTreatment=as.numeric(TimeToTreatment)

) %>%
select(DIDest,DIDse,Group,TimeToTreatment)

# add reference period to DID estimator
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DID.1.mod <- rbind(DID.1.mod,ref.dis %>% rename(DIDest=Coef,DIDse=Se)) %>%
mutate(
TimeToTreatment=as.numeric(TimeToTreatment)

)

# joining DID and SA estimates
CompDIDSA <- DID.1.mod %>%

left_join(disaggregate.SA,by=c('Group','TimeToTreatment')) %>%
mutate(

TimeToTreatment = factor(TimeToTreatment,levels=c('-3','-2','-1','0','1','2'))
)

Let’s now plot the results:
ggplot(CompDIDSA,aes(x=DIDest,y=Coef,shape=Group,color=TimeToTreatment))+

geom_point() +
geom_abline(slope=1,intercept=0,linetype="dotted",color="red")+
ylab("Sun and Abraham estimate") +
xlab("DID estimate") +
theme_bw()
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Figure 4.21: Comparison of treatment effects estimated using DID and Sun and
Abraham estimator (reference period τ ′ = 1)

As Figure 4.21 shows, the coefficients estimated through DID are identical to
the coefficients estimated using Sun and Abraham approach (they all lone up on
the 45 degree line). This is an illustration of the main result of Theorem 4.15.

Note that the estimated aggregated effect using DID with weights proportional
to group composition and time spent in the treatment is equal to ∆̂Y

TT (v) =
1.06. The corresponding estimate using Sun and Abraham estimator is equal to
1.07 ± 0.04. The two estimator are slightly different. This is because Sun and
Abraham aggregate effects estimated using exclusively the never treated group
as the control group while the DID estimator aggregates the same and effects
estimated using the other treated groups before they receive the treatment. It
should be the case that if we aggregate the DID estimates using only the never
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treated as the control group, we should obtain the same result as with Sun and
Abraham estimator. Let’s check.
# joining the weights to the results
DID.1.agg.SA <- DID.1 %>%

filter(dprime=="99",tau>=0) %>%
select(-prop.group) %>%
mutate(
d= factor(d,levels=c("99","4","3","2","1"))

) %>%
left_join(prop.groups.DID,by=c("d"="dprime")) %>%
mutate(
w.ATT = prop.group*DIDest

) %>%
summarize(
sum.w.ATT = sum(w.ATT),
sum.w = sum(prop.group)

) %>%
mutate(
ATT.varying.DID = sum.w.ATT/sum.w

) %>%
pull(ATT.varying.DID)

The estimated aggregated effect using DID with weights proportional to group
composition and time spent in the treatment, restricting the estimates to the
ones obtained using the never treated as the control group is equal to ∆̂Y

TT (v) =
1.07, which is indeed equal to the aggregate estimate computed by the Sun and
Abraham estimator in fixest.

Remark. What to do in pratice? Use only the never treated as controls?
It seems that using more groups as controls (if they are valid) should increase
efficiency.

4.3.3.2.3 Direct weighting using one reference period and one refer-
ence group (Callaway and Sant’Anna) Callaway and Sant’Anna (2021)
propose an alternative estimator to the one proposed by Sun and Abraham.
They suggest using a doubly robust matching estimator to condition on observed
covariates. We are only going to encouter these estimators in Section 5. In the
absence of covariates, Callaway and Sant’Anna’s estimator is equivalent to the
Sun and Abraham estimator. Callaway and Sant’Anna have proposed the did
package to implement their estimator. The main command is att_gt, which
computes all the estimates for each treatment group Di = g and each time
period t.

Example 4.33. Let’s see if we can make it work.
# preparing the data
# The Group variable has to take value 0 for the never treated (instead of infty or 99)

https://www.sciencedirect.com/science/article/pii/S0304407620303948
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data <- data %>%
mutate(
Group = if_else(Ds<99,Ds,0)

)

# regression
reg.CSA <- att_gt(yname="y",tname="time",idname="id",gname="Group",data=filter(data,Ds!=1),base_period="universal")

# dynamic treatment effects (event-study graph)
reg.CSA.Agg <- aggte(reg.CSA,type="dynamic")

Let’s plot the result:
# preparing the results for the plot
DID.CSA <- as.data.frame(reg.CSA$group)
colnames(DID.CSA) <- c("Group")
DID.CSA <- DID.CSA %>%

mutate(
time = reg.CSA$t,
Coef = reg.CSA$att,
Se = reg.CSA$se

) %>%
mutate(
TimeToTreatment = time-Group,
Group = factor(Group,levels=c('1','2','3','4','Aggregate')),

)

# add aggregate effect
DID.CSA.Agg <- as.data.frame(cbind(reg.CSA.Agg$egt,reg.CSA.Agg$att.egt,reg.CSA.Agg$se.egt))
colnames(DID.CSA.Agg) <- c('TimeToTreatment','Coef','Se')
DID.CSA.Agg <- DID.CSA.Agg %>%

mutate(
Group = factor(rep("Aggregate",nrow(DID.CSA.Agg)),levels=c('1','2','3','4','Aggregate'))

)

# merge all results
DID.CSA <- rbind(select(DID.CSA,-time),DID.CSA.Agg)

ggplot(DID.CSA,aes(x=TimeToTreatment,y=Coef,colour=Group,linetype=Group))+
geom_line() +
geom_pointrange(aes(ymin=Coef-1.96*Se,ymax=Coef+1.96*Se)) +
ylab("DID estimate") +
xlab("Time relative to treatment") +
scale_x_continuous(breaks=c(-3,-2,-1,0,1,2)) +
expand_limits(y=0) +
scale_colour_discrete(name="Treatment\ngroup")+
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scale_linetype_discrete(name="Treatment\ngroup")+
theme_bw()
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Figure 4.22: Disaggregated DID estimates around the treatment date estimated
using the Callaway and Sant’Anna procedure in did (reference period τ ′ = 1)

Figure 4.22 shows a result that is very similar to the one obtained in Figure
4.20 using Sun and Abraham’s approch as implemented in fixest. The two
approaches are indeed equivalent with the options that we have chosen.

Let us finally compute the aggregated treatment effect:
ATT.agg.CSA <- aggte(reg.CSA,type="simple")

The aggregated effect estimated using the Callaway and Sant’Anna approach as
implemented in did is equal to 1.07 ± 0.06.

4.3.3.2.4 De Chaisemartin and d’Haultfoeuille de Chaisemartin et
d’Haultfoeuille propose two ways to deal with DID with differences in treatment
timing. In de Chaisemartin and d’Haultfoeuille (2020), they propose to estimate
the effect of the treatment using only the periods where a change in treatment
status occurs, by comparing the treated to the not yet treated at the same time
periods. In de Chaisemartin et d’Haultfoeuille (2021), they propose to estimate
the dynamic effect of the treatment using a discounted sum of treatment effects
over time. In its simplest form, with staggered designs, a discrete treatment and
no covariates, de Chaisemartin et d’Haultfoeuille (2021)’s estimator is equivalent
to that of Sun and Abraham or Callaway and Sant’Anna. Both estimators have
been implemented in the DIDmutiplegt package with the did_multiplegt
function.

Example 4.34. Let’s see how it works.
# regression
reg.dCdH <- did_multiplegt(Y="y",T="time",G="id",D="D",df=filter(data,Ds!=1),placebo=3,dynamic=3,average_effect="prop_number_switchers")

Let us now pot the results:

https://www.aeaweb.org/articles?id=10.1257/aer.20181169
https://arxiv.org/abs/2007.04267
https://arxiv.org/abs/2007.04267
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# preparing the results for the plot
DID.dCdH <- as.data.frame(c(reg.dCdH$placebo_2,reg.dCdH$placebo_1,0,reg.dCdH$effect,reg.dCdH$dynamic_1,reg.dCdH$dynamic_2))
colnames(DID.dCdH) <- c("Coef")
DID.dCdH <- DID.dCdH %>%

mutate(
TimeToTreatment = c(-3,-2,-1,0,1,2),
Se = c(reg.dCdH$se_placebo_2,reg.dCdH$se_placebo_1,0,reg.dCdH$se_effect,reg.dCdH$se_dynamic_1,reg.dCdH$se_dynamic_2)

)

ggplot(DID.dCdH,aes(x=TimeToTreatment,y=Coef))+
geom_line() +
geom_pointrange(aes(ymin=Coef-1.96*Se,ymax=Coef+1.96*Se)) +
ylab("DID estimate") +
xlab("Time relative to treatment") +
scale_x_continuous(breaks=c(-3,-2,-1,0,1,2)) +
expand_limits(y=0) +
theme_bw()
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Figure 4.23: DID estimates around the treatment date estimated using the de
Chaisemartin and d’Haultfoeuille procedure (reference period τ ′ = 1)

Figure 4.23 shows that the profile estimated using de Chaisemartin and
d’Haultfoeuille’s aprproach is similar but distinct from the one estimated by the
other authors. Why is still to be determined.

Finally, the aggregate efect of the treatment as estimated by the de Chaisemartin
and d’Haultfoeuille (2020) approach is equal to 0.3. I have been unable to obtain
standard errors for this estimator for now.

4.3.3.2.5 Imputation methods: Borusyak, Jaravel and Speiss
Borusyak, Jaravel and Speiss (2021) adopt a very different framework from
the previous ones. They do not build from the individual DID estimators
∆Y
DID(d, d′, τ, τ ′), but instead propose to estimate the individual level treatment

effects ∆̂Y
i,t and then to aggregate them as one wishes to. In order to build

an estimate of the individual level treatment effects ∆̂Y
i,t, Borusyak, Jaravel

https://www.aeaweb.org/articles?id=10.1257/aer.20181169
https://www.aeaweb.org/articles?id=10.1257/aer.20181169
http://arxiv.org/abs/2108.12419
http://arxiv.org/abs/2108.12419
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and Speiss (2021) propose to use an imputation estimator, Ŷ 0
i,t, which predicts

the value of Y 0
i,t for each treated unit. Borusyak, Jaravel and Speiss (2021)’s

imputation estimator works as follows:

1. Within the never treated and not-yet-treated observations only, estimate
µ̂OLSi and δ̂OLSt using the following OLS regression:

Y 0
i,t = µi + δt + U0

i,t

2. For each treated observation, set Ŷ 0
i,t = µ̂OLSi + δ̂OLSt and ∆̂Y

i,t = Y 1
i,t− Ŷ 0

i,t.

Finally, Borusyak, Jaravel and Speiss (2021) propose to aggregate the estimates
for each treatment effect using weights wBJSki,t in order to form ∆̂Y

TT (BJSk) =∑
wBJSki,t ∆̂Y

i,t.

In the absence of covariates, or group-specific time trends, the main assumption
of Borusyak, Jaravel and Speiss (2021)’s framework is that the potential outcomes
in the absence of the treatment can be decomposed in two separate influences:

Hypothesis 4.21 (Additive Separability of Potential Outcomes in the Absence
of the Treatment). We assume that the potential outcomes in the absence of
the treatment are additively separable between time and individual fixed effects:

Y 0
i,t = µi + δt + U0

i,t,

with E[U0
i,t|Di] = 0, ∀t ∈ {1, . . . , T}.

Assumption 4.21 assumes that all the time and individual-level influences on
potential outcomes that are potentially correlated with treatment intake are
additively separable.

Remark. Borusyak, Jaravel and Speiss (2021) claim that Assumption 4.21 is
equivalent to Assumption 4.20 of parallel trends. I think we still need a formal
proof of that claim.

Borusyak, Jaravel and Speiss (2021) add another assumption, namely that error
terms are homoskedastic:

Hypothesis 4.22 (Homoskedasticity). We assume that the error terms are
homoskedastic and mutually uncorrelated:

E[U0U
′
0] = σ2I,

with U0 the vector of error terms and I the identity matrix of the coresponding
dimension.

http://arxiv.org/abs/2108.12419
http://arxiv.org/abs/2108.12419
http://arxiv.org/abs/2108.12419
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Under these assumptions, and the no-anticipation condition, Borusyak, Jaravel
and Speiss (2021) prove a very powerful result:

Theorem 4.16 (Imputation identifies Weighted TT). Under Assumptions 4.18,
4.19 and 4.21, the imputation estimator is the unique efficient linear unbiased
estimator of the corresponding weighted average of Treatment on the Treated:

∑
wBJSki,t ∆̂Y

i,t = ∆Y
TT (BJSk).

with

∆Y
TT (BJSk) =

∑
wki,t∆Y

i,t

Proof. See Borusyak, Jaravel and Speiss (2021) Theorems 1 and 2.

Theorem 4.16 is a pretty cool result. It shows that, under the assumptions made
so far, the imputation estimator is the most efficient way to combine observations
in order to obtain DID estimates of the effect of the treatment.

Remark. The “trick” that makes the Borusyak, Jaravel and Speiss (2021)’s
imputation estimator more efficient than Sun and Abraham or Callaway and
Sant’Anna’s estimators is that it combines all pre-treatment observations when
generating the treatment effect estimate. An open question is whether a weigthed
average of the individual DID estimates, including all the ones formed using
all pre-treatment observations as reference periods, is as efficient as Borusyak,
Jaravel and Speiss (2021)’s imputation estimator.

Remark. Borusyak, Jaravel and Speiss (2021) claim that Assumption 4.22 can
be relaxed to any known form of heteroskedasticity or autocorrelation and that
Theorem 4.16 would still hold.

How does Borusyak, Jaravel and Speiss (2021)’s imputation estimator work in
practice? Thanks to the amazing Kyle Butts, we have a package that computes
Borusyak, Jaravel and Speiss (2021)’s imputation estimator, didimputation.
The command is did_imputation.

Example 4.35. Let’s see how it works.
# regression
reg.BJS <- did_imputation(yname="y",tname="time",idname="id",gname="Group",data=filter(data,Ds!=1),horizon=TRUE,pretrends=TRUE)

Let us now plot the results:
# preparing the results for the plot
DID.BJS <- reg.BJS %>%

rename(
TimeToTreatment=term,
Coef=estimate,

https://kylebutts.com/
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Se=std.error
) %>%
mutate(
TimeToTreatment=as.numeric(TimeToTreatment)

)
# adding reference period
DID.BJS[nrow(DID.BJS)+1,] <- list(-1,0,0,0,0)

#plot
ggplot(DID.BJS,aes(x=TimeToTreatment,y=Coef))+

geom_line() +
geom_pointrange(aes(ymin=Coef-1.96*Se,ymax=Coef+1.96*Se)) +
ylab("DID estimate") +
xlab("Time relative to treatment") +
scale_x_continuous(breaks=c(-3,-2,-1,0,1,2)) +
expand_limits(y=0) +
theme_bw()
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Figure 4.24: DID estimates around the treatment date estimated using Borusyak,
Jaravel and Speiss’s procedure (reference period τ ′ = 1)

As Figure 4.24 shows, the dynamic profile of the treatment effect estimated using
Borusyak, Jaravel and Speiss’s procedure is very similar to the one obtained
using Sun and Abraham and Callaway and Sant’Anna.

Let us finally estimate the average treatment effect on the treated using Borusyak,
Jaravel and Speiss’s procedure:
# regression
reg.BJS.Agg <- did_imputation(yname="y",tname="time",idname="id",gname="Group",data=filter(data,Ds!=1))

The treatment effect estimated using Borusyak, Jaravel and Speiss’s estimator is
equal to 1.08 ± 0.04.

4.3.3.2.6 Imputation methods: Gardner Gardner (2021) proposes a two
stage estimator very similar to the one by Borusyak, Jaravel and Speiss (2021).

https://jrgcmu.github.io/
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Gardner writes outcomes for individual i at time t as follows, with group and
time fixed effects:

Yi,t =
∞∑
d=1

λd1[Di = d] +
T∑
l=1

δl1[l = t] +
∞∑
d=1

T∑
l=1

βGd,l1[Di = d]1[l = t] + εGi,t,

where the groups are defined by the date at which they start receiving the
treatment. In practice, Gardner’s estimator works as follows:

1. Estimate the following model using OLS on the sample of observations for
which Di,t = 0 (which excludes all the currently treated):

Yi,t =
∞∑
d=2

λd1[Di = d] +
T∑
l=1

δl1[l = t] + εGi,t

2. Regress the adjusted outcomes Yi,t −
∑∞
d=2 λ̂d1[Di = d]−

∑T
l=1 δ̂l1[l = t]

on Di,t and retain the coefficient β̂G. Note as well that one can also
estimate the average effect of the treatment around each treatment date
by regressing the adjusted outcomes on a set of dummies taking value one
when observation i at period t is τ periods from the treatment (here, we
omit the dummy for the never treated group and for one reference period,
in general τ = −1).

Gardner shows that the coefficient on Di,t in the second stage of this procedure
(β̂G) identifies the average effect of the treatment on the treated under the usual
parallel trends assumptions: βG = E[∆Y

i,t|Di,t = 1], where ∆Y
i,t = Y 1

i,t − Y 0
i,t.

What is pretty great is that Gardner, together with Kyle Butts, have provided
an R package in order to perform the estimation: did2s.

Example 4.36. Let’s see how it works in our example.
# regression
reg.Gardner <- did2s(data=filter(data,Ds!=1),yname = "y", first_stage = ~ 0 | id + time,second_stage = ~i(D, ref=FALSE), treatment = "D",cluster_var = "id")

The overall estimated treatment effect is 1.08 ± 0.06. This seems valid enough.
Now, did2s also provides a way to estimate the effect at each time period relative
the treatment date (a.k.a. the event study estimates).
# generating a TimeToTreatment variable
data <- data %>%

mutate(
TimeToTreatment = if_else(abs(time-Ds)<90,time-Ds,-99)

)
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# regression
reg.Gardner.event.study <- did2s(data=filter(data,Ds!=1),yname = "y", first_stage = ~ 0 | id + time,second_stage = ~i(TimeToTreatment, ref=c(-1, -99)), treatment = "D",cluster_var = "id")

Let us now plot the results:
# putting results into a dataframe
resultsGardnerEventStudy <- as.data.frame(cbind(coef(reg.Gardner.event.study),se(reg.Gardner.event.study)))
colnames(resultsGardnerEventStudy) <- c('Coef','Se')
# adding the time to treatment variable
resultsGardnerEventStudy <- resultsGardnerEventStudy %>%

mutate(
TimeToTreatment = c(-3,-2,0,1,2)

)
# adding the reference period
resultsGardnerEventStudy <- rbind(resultsGardnerEventStudy,c(0,0,-1))

#plot
ggplot(resultsGardnerEventStudy,aes(x=TimeToTreatment,y=Coef))+

geom_line() +
geom_pointrange(aes(ymin=Coef-1.96*Se,ymax=Coef+1.96*Se)) +
ylab("DID estimate") +
xlab("Time relative to treatment") +
scale_x_continuous(breaks=c(-3,-2,-1,0,1,2)) +
expand_limits(y=0) +
theme_bw()
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Figure 4.25: DID estimates around the treatment date estimated using Gardner’s
procedure (reference period τ ′ = 1)

4.3.3.2.7 Imputation methods: Liu, Wang and Xu Liu, Wang and Xu
(2021) also propose a series of imputation estimators, with some very similar
to the ones proposed by Borusyak, Jaravel and Speiss and by Gardner. Their
Proposition 1 is very close to Theorem 4.16, albeit they do not prove that their
estimator is the most efficient among linear estimators. They also propose an
R package to estimate their estimators, fect. I will come back to this package

http://arxiv.org/abs/2107.00856
http://arxiv.org/abs/2107.00856
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later, in Section 5, since most of the estimators they propose try to relax the
parallel trends assumption.

4.3.3.2.8 Stacked DID The stacked DID approach has been proposed by
Cengiz, Dube, Lindner and Zipperer (2019) and extended by Gardner (2021).
For stacked DID, one creates a dataset for each group defined by its date of
treatment, with all observations treated at that date and the ones that are not
yet treated, one then stacks all these datasets together, and estimates a two-way
fixed effects model with time × dataset specific fixed effects and individual
fixed effects. Gardner’s Appendix A show that this procedure yields a weighted
average of group and time specific treatment effects, with weights that do not
generally correspond to the ones of the ATT estimate, but that are positive
and sum to one. One issue I have with this approach is that it focuses only on
cases where there are no never treated observations. If we keep never treated
observations in the stacked DID approach, they are going to be used multiple
times and one certainly needs to account for that when estimating precision.

The way I’m choosing to implement this approach is by adding specific group
× time dummies for all the members of a given group defined by its date of
first treatment and all the not-yet-treated observations at that same date. We
are going to run a two-way fixed effects model on these fixed effects and on
individual fixed effects as well as on treatment dummies.

Example 4.37. Let’s see how it goes.
# generating the groups x time dummies
data <- data %>%

mutate(
FE.1.1 = if_else(time ==1 & (Ds==1 | D==0),1,0),
FE.1.2 = if_else(time ==2 & (Ds==1 | D==0),1,0),
FE.1.3 = if_else(time ==3 & (Ds==1 | D==0),1,0),
FE.1.4 = if_else(time ==4 & (Ds==1 | D==0),1,0),
FE.2.1 = if_else(time ==1 & (Ds==2 | D==0),1,0),
FE.2.2 = if_else(time ==2 & (Ds==2 | D==0),1,0),
FE.2.3 = if_else(time ==3 & (Ds==2 | D==0),1,0),
FE.2.4 = if_else(time ==4 & (Ds==2 | D==0),1,0),
FE.3.1 = if_else(time ==1 & (Ds==3 | D==0),1,0),
FE.3.2 = if_else(time ==2 & (Ds==3 | D==0),1,0),
FE.3.3 = if_else(time ==3 & (Ds==3 | D==0),1,0),
FE.3.4 = if_else(time ==4 & (Ds==3 | D==0),1,0),
FE.4.1 = if_else(time ==1 & (Ds==4 | D==0),1,0),
FE.4.2 = if_else(time ==2 & (Ds==4 | D==0),1,0),
FE.4.3 = if_else(time ==3 & (Ds==4 | D==0),1,0),
FE.4.4 = if_else(time ==4 & (Ds==4 | D==0),1,0)

)

# regression for individual parameter

https://academic.oup.com/qje/article/134/3/1405/5484905
https://jrgcmu.github.io/2sdd_current.pdf
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reg.stacked.aggregate <- feols(y ~ D
+ FE.1.1 + FE.1.2 + FE.1.3 + FE.1.4
+ FE.2.1 + FE.2.2 + FE.2.3 + FE.2.4
+ FE.3.1 + FE.3.2 + FE.4.3 + FE.4.4

| id + time, data=filter(data,Ds!=1))

# event study regression
reg.stacked.event.study <- feols(y ~ i(TimeToTreatment,ref=c(-99,-1))

+ FE.1.1 + FE.1.2 + FE.1.3 + FE.1.4
+ FE.2.1 + FE.2.2 + FE.2.3 + FE.2.4
+ FE.3.1 + FE.3.2 + FE.4.3 + FE.4.4

| id + time, data=filter(data,Ds!=1))

The total estimate given by the stacked regression is of 1.86, which seems pretty
large compared to the other estimators. Remember that the average effect of
the treatment, giving equal weight to each time period τ ∈ {0, 1, 2}, is equal
to ∆̂Y

TT (e) = 1.59 while the average effect of the treatment, giving weights
proportional to group composition and time spent in the treatment is equal
to ∆̂Y

TT (v) = 1.06. Let us plot the corresponding results of the event study
regression.
# putting results into a dataframe
resultsStackedDIDEventStudy <- as.data.frame(cbind(reg.stacked.event.study$coefficients[1:5],reg.stacked.event.study$se[1:5]))
colnames(resultsStackedDIDEventStudy) <- c('Coef','Se')
# adding the time to treatment variable
resultsStackedDIDEventStudy <- resultsStackedDIDEventStudy %>%

mutate(
TimeToTreatment = c(-3,-2,0,1,2)

)
# adding the reference period
resultsStackedDIDEventStudy <- rbind(resultsStackedDIDEventStudy,c(0,0,-1))

#plot
ggplot(resultsStackedDIDEventStudy,aes(x=TimeToTreatment,y=Coef))+

geom_line() +
geom_pointrange(aes(ymin=Coef-1.96*Se,ymax=Coef+1.96*Se)) +
ylab("DID estimate") +
xlab("Time relative to treatment") +
scale_x_continuous(breaks=c(-3,-2,-1,0,1,2)) +
expand_limits(y=0) +
theme_bw()

The results seem pretty nice and close to what we have obtained so far with the
other methods we have used.



256 CHAPTER 4. NATURAL EXPERIMENTS

0

1

2

3

−3 −2 −1 0 1 2
Time relative to treatment

D
ID

 e
st

im
at

e

Figure 4.26: DID estimates around the treatment date estimated using Stacked
DID (reference period τ ′ = 1)

4.3.3.2.9 Two-Way Fixed Effects Before we conclude, there is one last set
of methods that we might have wanted to use: the methods based on the standard
Two Way Fixed Effects model with time and unit-specific fixed effects that we
have introduced in Sections 4.3.1.2.4, 4.3.1.2.5 and 4.3.1.2.6, and which can be
estimated using various types of methods (Least Squares Dummy Variables,
Within regression or other fast methods). Methods based on the Two Way Fixed
Effects model were actually the most used ones to estimate treatment effects and
event study regressions in staggered designs before a string of results showed
that they had severe issues. In this section, we will cover the basic issues that
methods based on the Two Way Fixed Effects model face in a staggered design
and we will state conditions under which they can be correct.

Example 4.38. Before that, let us simply look at how the Two Way Fixed
Effects model performs in our example.
# regression for individual parameter
reg.TWFE.aggregate <- feols(y ~ D | id + time, data=data)

# event study regression
reg.TWFE.event.study <- feols(y ~ i(TimeToTreatment,ref=c(-99,-1)) | id + time, data=data)

The Two Way Fixed Effects-based estimate of the aggregate treatment effect on
the treated is equal to -0.08 ± 0.1, while the effect estimated the correct weighting
of basic DID estimators giving weights proportional to group composition and
time spent in the treatment is equal to ∆̂Y

TT (v) = 1.06. Let us now plot the
event study estimates obtained using Two Way Fixed Effects-based methods:
# putting results into a dataframe
resultsTWFEEventStudy <- as.data.frame(cbind(reg.TWFE.event.study$coefficients[1:5],reg.TWFE.event.study$se[1:5]))
colnames(resultsTWFEEventStudy) <- c('Coef','Se')
# adding the time to treatment variable
resultsTWFEEventStudy <- resultsTWFEEventStudy %>%

mutate(
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TimeToTreatment = c(-3,-2,0,1,2)
)

# adding the reference period
resultsTWFEEventStudy <- rbind(resultsTWFEEventStudy,c(0,0,-1))

#plot
ggplot(resultsTWFEEventStudy,aes(x=TimeToTreatment,y=Coef))+

geom_line() +
geom_pointrange(aes(ymin=Coef-1.96*Se,ymax=Coef+1.96*Se)) +
ylab("DID estimate") +
xlab("Time relative to treatment") +
scale_x_continuous(breaks=c(-3,-2,-1,0,1,2)) +
expand_limits(y=0) +
theme_bw()
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Figure 4.27: DID estimates around the treatment date estimated using TWFE
(reference period τ ′ = 1)

Surprisingly, the profile of the event-study estimates does not seem to be too
different from the ones we have estimated before. What has happened? Why
would the aggregate estimate be so wrong and the event-study estimate correct?
Let us dig into the technical properties of the Two Way Fixed Effects-based
estimators in order to understand why. We are first going to look at the properties
of the Two Way Fixed Effects-based estimators for the average effect of the
treatment on the treated and then we will look at the properties of the event
study estimates.

4.3.3.2.9.1 Bias of the Two Way Fixed Effects-based estimators for
the Average Treatment Effect on the Treated The properties of the Two
Way Fixed Effects-based estimators have been studied in detail by Goodman-
Bacon (2021). In order to state Goodman-Bacon’s main result, we are going
to consider that there are only three time periods in the data: a t = pre time
period, where no one is treated, a t = mid time period, where only early adopters
are treated (those with Di = mid) and finally a t = last time period, where

https://doi.org/10.1016/j.jeconom.2021.03.014
https://doi.org/10.1016/j.jeconom.2021.03.014
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a second group receives the treatment. We also allow for some units to be
never treated, and we denote them with Di = u. We denote nd =

∑
i
1[Di=d]
N ,

with d ∈ {u,mid, last} the share of each treatment group in the sample and
D̄d the share of time each group spends in the treament state. In this setting,
Goodman-Bacon (2021) proves the following theorem:

Theorem 4.17 (Goodman-Bacon Decomposition of Two Way Fixed Effect-
s-based estimators). The parameter β̂TWFE estimated by Two Way Fixed Effects-
based estimators can be written as follows:

β̂TWFE = wTWFE
u (mid)∆Y

DID(mid, u,mid, pre)
+ wTWFE

u (mid)∆Y
DID(mid, u, last, pre)

+ wTWFE
u (last)∆Y

DID(last, u, last, pre)
+ wTWFE

u (last)∆Y
DID(last, u, last,mid)

+ wTWFE
last (mid)∆Y

DID(mid, last,mid, pre)
+ wTWFE

r (last,mid)∆Y
DIDr (last,mid, last,mid)

with

∆Y
DID(d, d′, τ, τ ′) = E[Yi,τ − Yi,τ ′ |Di = d]− E[Yi,τ − Yi,τ ′ |Di = d′]

wTWFE
u (d) = (nd + nu)2 V̂

D
d,u

V̂ D
, d ∈ {mid, last}

wTWFE
last (mid) = ((nlast + nmid)(1− D̄last))2 V̂

D
mid,last

V̂ D

wTWFE
r (last,mid) = ((nlast + nmid)D̄2

mid

V̂ Dlast,mid

V̂ D

V̂ Dd,u = nd,u(1− nd,u)D̄d(1− D̄d), d ∈ {mid, last}

V̂ Dmid,last = nmid,last(1− nmid,last)
D̄mid − D̄last

1− D̄last

1− D̄mid

1− D̄last

V̂ Dlast,mid = nmid,last(1− nmid,last)
D̄last

D̄mid

D̄mid − D̄last

D̄mid

nd,d′ = nd
nd + n′d

and
∑
d,d′ w

TWFE(d, d′) = 1.

Proof. See Goodman-Bacon (2021) Theorem 1.

The beauty of Goodman-Bacon’s theorem is that it relates directly the Two Way
Fixed Effects-based estimators to the individual two-period DID estimators we
have studied in Section 4.3.1. The key to understand the bias of the Two Way
Fixed Effects-based estimators is that the DIDr estimator we studied in Section

https://doi.org/10.1016/j.jeconom.2021.03.014
https://doi.org/10.1016/j.jeconom.2021.03.014
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4.3.2 appears in Goodman-Bacon’s decomposition. This is because units with
Di = mid become always treated observations for the last two periods. They
are used as counterfactuals by the Two Way Fixed Effects-based estimators for
the observations that enter in the last period. We have shown with Theorem
4.10 that, under the classical parallel trends assumption, the DIDr estimator is
biased for the treatment effect on the treated after the treatment takes place.
The bias is equal to minus the change over time in treatment effect on the treated.
It means that if treatment effects increase over time, the DIDr estimator will
introduce a negative bias in the Two Way Fixed Effects-based estimators. In our
example, this bias is made even more severe by the fact that we have an always
treated group, which is used at every period as a counterfactual. Since the effect
for the always treated group increases very fast over time, the bias of the DIDr

estimator becomes large and negative.

Remark. If the treatment effects are constant over time (but possibly hetero-
geneous across groups), then the bias due to the DIDr disappears, as Lemma
4.5 shows, and the Two Way Fixed Effects-based estimators recover a weighted
average of treatment effects, with positive weights summing to one. The problem
with the Two Way Fixed Effects-based estimators is still that the weights used
to combine the various treatment effects are not easy to interpret. One probably
prefers using tailor-made weights as in the estimators we have studied previously.

Add corollary showing that TWFE is consistent under constant treat-
ment effects over time

4.3.3.2.9.2 Bias of the Two Way Fixed Effects-based estimators for
the event study estimates The properties of the Two Way Fixed Effects-
based estimators for event study parameters have been studied in detail by Sun
and Abraham (2021). They focus on the following Two Way Fixed Effects model
of an event-study analysis:

Yi,t = µi + δt +
∑
g∈G

βTWFE
} 1[t−Di ∈ g] + εTWFE

i,t ,

where the set G collects disjoint sets g of relative time periods τ ∈ {−T, . . . , T},
and excludes some of them. The excluded sets of time periods are collected in
a set gexcl. The most classical specification corresponding to the general case
above uses as sets g:

• Observations that are such that −K ≤ t − Di ≤ −2, with one specific
indicator for each of the individual relative time periods τ = t−Di,

• Observations that are such that 0 ≤ t−Di ≤ L, with one specific indicator
for each of the individual relative time periods,

• All the observations that will be treated more than K periods in the future
(t−Di < −K),

• All the observations that are such that t−Di > L.

https://doi.org/10.1016/j.jeconom.2020.09.006
https://doi.org/10.1016/j.jeconom.2020.09.006
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In general, gexcl = {−1,−∞}, so that the reference period with respect to which
all treatment effects are estimated is the period just before the treatment. By
convention, 1[t −Di = −∞] = 0. Note that this is the specification we have
adopted in most of our numerical examples so far, without using the strategy of
binning together far away observations on both sides of the treatment date.

In this setting, Sun and Abraham prove the following result:

Theorem 4.18 (Sun and Abraham Decomposition of Two Way Fixed Effect-
s-based event-study estimators). The parameter βTWFE

g estimated by Two Way
Fixed Effects-based event-study estimators can be written as follows:

βTWFE
g =

∑
τ∈g

∑
d

wgd,τ∆Y
DID(d,∞, τ,−d+ 1)

+
∑

g′ 6=g,g′∈g

∑
τ∈g′

∑
d

wgd,τ∆Y
DID(d,∞, τ,−d+ 1)

+
∑

τ∈gexcl

∑
d

wgd,τ∆Y
DID(d,∞, τ,−d+ 1),

where the weights wgd,τ are equal to the population regression coefficients on
1[t − Di ∈ g] from regressing 1[t − Di = τ ]1[Di = d] on time and individual
fixed effects and all bin indicators {1[t−Di ∈ g]}g∈g

Proof. See Sun and Abraham (2021) Proposition 1.

Theorem 4.18 shows that the coefficient βTWFE
g in the TWFE event-study

regression does not only capture the DID estimate at that period, but also the
DID estimates at other periods g′ and at the reference periods gexcl. This is
potentially a severe problem. For example, estimates of the effect pre-treatment
can appear large and positive whereas the effect at these dates is actually zero.

Example 4.39. In our numerical example, we have already seen that the TWFE
event-study estimator is not severely biased for the event study coefficients. We
are going to use an example from Andrew Baker in order to illustrate the bias
of the TWFE event-study estimator and try to understand its sources.

The data-generating process is:

yi,t = µi + δt + τi,t + εi,t,

where µi ∼ N (0, 1), δt ∼ N (0, 1) and εi,t ∼ N (0, 0.25).

The N = 1000 inits (firms) are randomly allocated to 40 states g, and each state
is randommly allocated to one of four treatment groups depending on the year in
which it is treated (τg ∈ {1986, 1992, 1998, 2004}). For every unit incorporated
in a treated state, we draw a unit specific treatment effect τi ∼ N (0.3, (1/5)2),
and the cumulated treatment effect for unit i is τi,t = τi(t− τg + 1).

https://doi.org/10.1016/j.jeconom.2020.09.006
https://andrewcbaker.netlify.app/2020/06/27/how-to-create-relative-time-indicators/
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# set seed
set.seed(20200403)
# Fixed Effects ------------------------------------------------
# unit fixed effects
unit <- tibble(
unit = 1:1000,
unit_fe = rnorm(1000, 0, 1),
# generate state
state = sample(1:40, 1000, replace = TRUE),
# generate treatment effect
mu = rnorm(1000, 0.3, 0.2))

# year fixed effects
year <- tibble(
year = 1980:2010,
year_fe = rnorm(31, 0, 1))

# Trend Break -------------------------------------------------------------
# Put the states into treatment groups
treat_taus <- tibble(

# sample the states randomly
state = sample(1:40, 40, replace = FALSE),
# place the randomly sampled states into five treatment groups G_g
cohort_year = sort(rep(c(1986, 1992, 1998, 2004), 10)))

# make main dataset
# full interaction of unit X year
data.baker <- expand_grid(unit = 1:1000, year = 1980:2010) %>%
left_join(., unit) %>%
left_join(., year) %>%
left_join(., treat_taus) %>%
# make error term and get treatment indicators and treatment effects
mutate(error = rnorm(31000, 0, 0.5),

treat = ifelse(year >= cohort_year, 1, 0),
tau = ifelse(treat == 1, mu, 0)) %>%

# calculate cumulative treatment effects
group_by(unit) %>%
mutate(tau_cum = cumsum(tau)) %>%
ungroup() %>%
# calculate the dep variable
mutate(dep_var = unit_fe + year_fe + tau_cum + error)

Let’s plot the data now:
# plot
plot <- data.baker %>%
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ggplot(aes(x = year, y = dep_var, group = unit)) +
geom_line(alpha = 1/8, color = "grey") +
geom_line(data = data.baker %>%

group_by(cohort_year, year) %>%
summarize(dep_var = mean(dep_var)),

aes(x = year, y = dep_var, group = factor(cohort_year),
color = factor(cohort_year)),

size = 2) +
labs(x = "", y = "Value") +
geom_vline(xintercept = 1986, color = '#E41A1C', size = 2) +
geom_vline(xintercept = 1992, color = '#377EB8', size = 2) +
geom_vline(xintercept = 1998, color = '#4DAF4A', size = 2) +
geom_vline(xintercept = 2004, color = '#984EA3', size = 2) +
scale_color_brewer(palette = 'Set1') +
theme(legend.position = 'bottom',

legend.title = element_blank(),
axis.title = element_text(size = 14),
axis.text = element_text(size = 12))
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Figure 4.28: Average outcomes in Baker’s dataset

Let’s estimate an event-study regression on this data:

yi,t = µi + δt +
∑
k 6=−1

βk1{Dk
i,t = k}+ εi,t,

where Dk
i,t measures the time to treatment. In practice, we bin together all the

treated observations that are treated more than 5 time periods ahead and, in a
separate dummy, all the observations that have been treated more than 5 time
periods before. Let’s run the regression (note that Andrew Baker uses the felm
function of the lfe package instead of the feols function of the fixest package
that we have prefentially used):
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# variables we will use
keepvars <- c("`rel_year_-5`", "`rel_year_-4`", "`rel_year_-3`", "`rel_year_-2`",

"rel_year_0", "rel_year_1", "rel_year_2", "rel_year_3", "rel_year_4", "rel_year_5")

# make dummy columns
data.baker <- data.baker %>%

# make dummies
mutate(rel_year = year - cohort_year) %>%
dummy_cols(select_columns = "rel_year") %>%
# generate pre and post dummies
mutate(Pre = ifelse(rel_year < -5, 1, 0),

Post = ifelse(rel_year > 5, 1, 0))

# estimate the model
mod <- felm(dep_var ~ Pre + `rel_year_-5` + `rel_year_-4` + `rel_year_-3` + `rel_year_-2` +

`rel_year_0` + `rel_year_1` + `rel_year_2` + `rel_year_3` + `rel_year_4` +
`rel_year_5` + Post | unit + year | 0 | state, data = data.baker, exactDOF = TRUE)

# grab the obs we need
DIDBakerEstimTWFEBinned <- broom::tidy(mod) %>%

filter(term %in% keepvars) %>%
mutate(t = c(-5:-2, 0:5)) %>%
select(t, estimate,std.error) %>%
bind_rows(tibble(t = -1, estimate = 0, std.error = 0)) %>%
mutate(true_tau = ifelse(t >= 0, (t + 1)*.3, 0))

Let us now plot the results estimates:
ggplot(aes(x = t, y = estimate),data=DIDBakerEstimTWFEBinned) +
geom_linerange(aes(ymin = estimate-1.96*std.error, ymax = estimate+1.96*std.error), color = 'darkgrey', size = 2) +
geom_point(color = 'blue', size = 4) +
geom_line(aes(x = t, y = true_tau), color = 'red', linetype = "dashed", size = 2) +
geom_hline(yintercept = 0, linetype = "dashed") +
scale_x_continuous(breaks = -5:5) +
labs(x = "Relative Time", y = "Estimate") +
theme(axis.title = element_text(size = 14),

axis.text = element_text(size = 12))

The true estimates (in red) appear to have been severely misestimated by the
TWFE binned estimator. The pre-trends, which are parallel in the generated
data, appear to be affected by a downward slope with the Two Way Fixed Effects
estimator. The treatment effects do not increase continuously over time, as they
should, and they are most of the time biased downwards.

There are two main problems with the event-study model estimated with the
TWFE estimator on the data plotted in Figure 4.28:
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Figure 4.29: Binned Two Way Fixed Effects estimator in Baker’s dataset

1. The binned treatment groups, especially the post treatment group, that
regroups all observations that have been in the treatment for more than
5 years, does not move after once has entered it. It thus serves as a
control group for the more recently treated, which generates a reverse DID
estimator, which is biased when treatment effects grow over time.

2. Post 2003, all groups are treated and there thus are no untreated obser-
vations to serve as a control group, except for the post treatment binned
group. This exacerbates the first problem.

The cures for this issues seem to:

1. Never bin observations post-treatment, so that they are never used in a
reverse DID design.

2. Never include time periods without any control group in the data.

Let’s see what happens when we stop binning our post-treatment observations,
we drop all treatment years for which there are no controls and we replace the
time-to-treatment indicator by a constant for the never treated group (so that
it is not used to build the time to treatment indicators, but only as a control
group, to estimate the time fixed effects).
data.baker <- data.baker %>%

filter(year <= 2003) %>%
mutate(cohort_year = ifelse(cohort_year == 2004, 0, cohort_year)) %>%
# make relative year indicator
mutate(rel_year = year - cohort_year)

# get the minimum relative year - we need this to reindex
min_year <- min(data.baker %>% filter(cohort_year != 0) %>% pull(rel_year))

# reindex the relative years
data.baker <- data.baker %>%

mutate(rel_year = rel_year - min_year) %>%
dummy_cols(select_columns = "rel_year")
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# make regression formula
indics <- paste("rel_year", (1:max(data.baker %>% filter(cohort_year != 0) %>% pull(rel_year)))[-(-1 - min_year)], sep = "_", collapse = " + ")
keepvars <- paste("rel_year", c(-5:-2, 0:5) - min_year, sep = "_")
formula <- as.formula(paste("dep_var ~", indics, "| unit + year | 0 | state"))

# run mod
mod <- felm(formula, data = data.baker, exactDOF = TRUE)

# grab the obs we need
DIDBakerEstimTWFECorrect <- broom::tidy(mod) %>%

filter(term %in% keepvars) %>%
mutate(t = c(-5:-2, 0:5)) %>%
select(t, estimate, std.error) %>%
bind_rows(tibble(t = -1, estimate = 0, std.error=0)) %>%
mutate(true_tau = ifelse(t >= 0, (t + 1)*.3, 0))

Let us now plot the data:
ggplot(aes(x = t, y = estimate),data=DIDBakerEstimTWFECorrect) +
geom_linerange(aes(ymin = estimate-1.96*std.error, ymax = estimate+1.96*std.error), color = 'darkgrey', size = 2) +
geom_point(color = 'blue', size = 4) +
geom_line(aes(x = t, y = true_tau), color = 'red', linetype = "dashed", size = 2) +
geom_hline(yintercept = 0, linetype = "dashed") +
scale_x_continuous(breaks = -5:5) +
labs(x = "Relative Time", y = "Estimate") +
theme(axis.title = element_text(size = 14),

axis.text = element_text(size = 12))
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Figure 4.30: Corrected Two Way Fixed Effects estimator in Baker’s dataset

So, in general, Sun and Abraham bias seems to come from a misleading binning
of treated observations post treatment and the absence of a never treated group.
Let us check whether this would generate weird results for the Two-Way Fixed
Effects estimator in our dataset as well.
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Example 4.40. Let us check whether binning the post-treatment observations
together (let’s say the last two) generates bias for the event study estimator in
our original dataset. We distinguish between an estimator using the data from
the always takers and an estimator not using these observations.
# generating the binned indicator
data <- data %>%

mutate(
TimeToTreatmentBinned = if_else(TimeToTreatment<=0,TimeToTreatment,1)

)

# event study regression
# without the always treated
reg.TWFE.event.study.binned.No1 <- feols(y ~ i(TimeToTreatmentBinned,ref=c(-99,-1)) | id + time, data=filter(data,Ds>1))
# with the always treated
reg.TWFE.event.study.binned.1 <- feols(y ~ i(TimeToTreatmentBinned,ref=c(-99,-1)) | id + time, data=data)

Let us now plot the event study estimates obtained using Two Way Fixed
Effects-based methods with binned data:
# putting results into a dataframe
resultsTWFEEventStudyBinned <- as.data.frame(rbind(cbind(reg.TWFE.event.study.binned.No1$coefficients[1:4],reg.TWFE.event.study.binned.No1$se[1:4]),

cbind(reg.TWFE.event.study.binned.1$coefficients[1:4],reg.TWFE.event.study.binned.1$se[1:4])))
colnames(resultsTWFEEventStudyBinned) <- c('Coef','Se')
# adding the time to treatment variable
resultsTWFEEventStudyBinned <- resultsTWFEEventStudyBinned %>%

mutate(
TimeToTreatment = rep(c(-3,-2,0,1),2)

)
# adding the reference periods
resultsTWFEEventStudyBinned <- rbind(resultsTWFEEventStudyBinned,c(0,0,-1))
resultsTWFEEventStudyBinned <- rbind(resultsTWFEEventStudyBinned,c(0,0,-1))

# adding the method dummy
resultsTWFEEventStudyBinned <- resultsTWFEEventStudyBinned %>%

mutate(
Method = c(rep("Without Always Treated",4),rep("With Always Treated",4),c("Without Always Treated","With Always Treated"))

)

#plot
ggplot(resultsTWFEEventStudyBinned,aes(x=TimeToTreatment,y=Coef,color=Method,linetype=Method))+

geom_line() +
geom_pointrange(aes(ymin=Coef-1.96*Se,ymax=Coef+1.96*Se)) +
ylab("DID estimate") +
xlab("Time relative to treatment") +
scale_x_continuous(breaks=c(-3,-2,-1,0,1,2)) +
expand_limits(y=0) +
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theme_bw()
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Figure 4.31: DID estimates around the treatment date estimated using the
Binned TWFE estimator (reference period τ ′ = 1)

Figure 4.31 confirms the analysis based on Andrew Baker’s data presented in
Figure 4.29. Binning the data post-treatment severely biases the event study
graph estimated using a Two-Way Fixed Effects estimator, especially if one keeps
the always treated observations in the dataset.

4.3.3.2.10 Summary Let us regroup all the event study estimates and all
the aggregated estimates of the TT together in order to compare them with the
true estimator. Let us start with the event study estimates first.

# let us first combine all the estimators together
DID.event.study.all <- rbind(

DID.tau %>% filter(d=="Aggregate") %>% select(tau,ATT.tau) %>% mutate(Method="Weighted DID",Se=0) %>% rename(TimeToTreatment=tau,Coef=ATT.tau),
disaggregate.SA %>% filter(Group=="Aggregate") %>% select(TimeToTreatment,Coef,Se) %>% mutate(Method="Sun & Abraham"),
DID.CSA %>% filter(Group=="Aggregate") %>% select(TimeToTreatment,Coef,Se) %>% mutate(Method="Callaway & SantAnna"),
DID.dCdH %>% mutate(Method="de Chaisemartin & d'Haultfoeuille"),
DID.BJS %>% select(TimeToTreatment,Coef,Se) %>% mutate(Method="Borusyak, Jaravel & Speiss"),
resultsGardnerEventStudy %>% select(TimeToTreatment,Coef,Se) %>% mutate(Method="Gardner"),
resultsStackedDIDEventStudy %>% select(TimeToTreatment,Coef,Se) %>% mutate(Method="Stacked DID"),
resultsTWFEEventStudy %>% select(TimeToTreatment,Coef,Se) %>% mutate(Method="TWFE")

)

# Let us now add the true value of the treatment effect in the sample.
# it is not easy to estimate
# we are going to use variable weights and the meriod -1 as reference (taking its treatment effect our of all treatment effect estimates)
DID.truth <- data %>%

mutate(
alpha = if_else(D==1,y1-y0,0)

) %>%

https://andrewcbaker.netlify.app/2020/06/27/how-to-create-relative-time-indicators/
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filter(Group>1) %>%
group_by(TimeToTreatment) %>%
summarize(
Coef=if_else(TimeToTreatment>=0,mean(alpha),0)

) %>%
mutate(
Method="Truth",
Se=0

) %>%
filter(TimeToTreatment<3)

# regrouping
DID.event.study.all <- rbind(DID.event.study.all,DID.truth) %>%

mutate(
Method=factor(Method,levels=c("Truth","Weighted DID","Sun & Abraham","Callaway & SantAnna","de Chaisemartin & d'Haultfoeuille","Borusyak, Jaravel & Speiss","Gardner","Stacked DID","TWFE"))

)

4.3.3.2.10.1 Event study estimates Let us now plot the data:
# plot
ggplot(DID.event.study.all,aes(x=TimeToTreatment,y=Coef,colour=Method,linetype=Method,shape=Method))+

geom_line() +
geom_pointrange(aes(ymin=Coef-1.96*Se,ymax=Coef+1.96*Se)) +
ylab("DID estimate") +
xlab("Time relative to treatment") +
scale_x_continuous(breaks=c(-3,-2,-1,0,1,2)) +
expand_limits(y=0) +
scale_colour_discrete(name="Treatment\ngroup")+
scale_linetype_discrete(name="Treatment\ngroup")+
scale_shape_discrete(name="Treatment\ngroup")+
theme_bw()
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Figure 4.32: Event study estimates around the treatment date with various
methods (reference period τ ′ = 1)
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Note that all estimators are pretty similar. There is a dip 3 periods before
treatment for some estimators. It is actually a true dip due to time varying
selection bias at the first period which is embedded in the model.

Remark. Another approach to compare all estimators would be to use directly
the did2s package. The command event_study uses almost all the commands
already presented and integrates them into one unique analysis. Let’s see how
this works.
# modifying the name of the control group variable to 0
data <- data %>%

mutate(
Ds=if_else(Ds==99,0,Ds)

)
# regression
reg.event.study.all <- event_study(data=filter(data,Ds!=1),yname = "y", idname="id", tname = "time",gname="Ds")

# modifying the name of the control group variable back to 99
data <- data %>%

mutate(
Ds=if_else(Ds==0,99,Ds)

)

Let’s now plot the results. It is made super easy by the command
plot_event_study but we could also use the same ggplot command that we
have used so far.
# using the plot_event_study command (not super nice, so not shown)
# plot_event_study(reg.event.study.all,seperate = F)

# preparing data
reg.event.study.all <- reg.event.study.all %>%

mutate(
estimator=factor(estimator,levels=c("Sun and Abraham (2020)","Callaway and Sant'Anna (2020)","Borusyak, Jaravel, Spiess (2021)","Gardner (2021)","TWFE","Roth and Sant'Anna (2021)"))

) %>%
rename(
Method=estimator,
Coef=estimate,
Se=std.error,
TimeToTreatment=term

)

# using classical ggplot
ggplot(reg.event.study.all,aes(x=TimeToTreatment,y=Coef,group=Method,color=Method))+

geom_line() +
geom_pointrange(aes(ymin=Coef-1.96*Se,ymax=Coef+1.96*Se)) +
ylab("DID estimate") +
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xlab("Time relative to treatment") +
scale_x_continuous(breaks=c(-3,-2,-1,0,1,2)) +
expand_limits(y=0) +
theme_bw()
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Figure 4.33: DID estimates around the treatment date estimated using various
procedures (reference period τ ′ = 1)

There is a problem here, let’s hope we can find a way to solve it.

4.3.3.2.10.2 Aggregate Treatment on the Treated Estimates Let us
now see what happens to the average effect of the treatment on the treated.
# let us first combine all the estimators together
DID.TT.all <- DID.event.study.all <- rbind(

data.frame(Coef=c(ATT.equal),Se=c(0)) %>% mutate(Method="Weighted DID Equal",Se=0),
data.frame(Coef=c(ATT.varying),Se=c(0)) %>% mutate(Method="Weighted DID Varying",Se=0),
as.data.frame(ATT.agg.SA) %>% rename(Coef=Estimate,Se=colnames(ATT.agg.SA)[[2]]) %>% select(Coef,Se) %>% mutate(Method="Sun & Abraham"),
as.data.frame(ATT.agg.CSA[1:2]) %>% rename(Coef=overall.att,Se=overall.se) %>% mutate(Method="Callaway & SantAnna"),
data.frame(Coef=c(reg.dCdH$effect),Se=c(0)) %>% mutate(Method="de Chaisemartin & d'Haultfoeuille"),
reg.BJS.Agg[2:3] %>% rename(Coef=estimate,Se=std.error) %>% mutate(Method="Borusyak, Jaravel & Speiss"),
data.frame(Coef=coef(reg.Gardner)[[1]],Se=se(reg.Gardner)[[1]]) %>% mutate(Method="Gardner"),
data.frame(Coef=coef(reg.stacked.aggregate)[[1]],Se=se(reg.stacked.aggregate)[[1]]) %>% mutate(Method="Stacked DID"),
data.frame(Coef=reg.TWFE.aggregate$coefficients[[1]],Se=reg.TWFE.aggregate$se[[1]]) %>% mutate(Method="TWFE")

)

# Let us now add the true value of the treatment effect in the sample.
ATT.truth <- data %>%

filter(Group>1,D==1) %>%
mutate(

alpha = y1-y0
) %>%
summarize(
Coef=mean(alpha)

) %>%
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mutate(
Method="Truth",
Se=0

)

# regrouping
DID.TT.all <- rbind(DID.TT.all,ATT.truth) %>%

mutate(
Method=factor(Method,levels=c("Truth","Weighted DID Equal","Weighted DID Varying","Sun & Abraham","Callaway & SantAnna","de Chaisemartin & d'Haultfoeuille","Borusyak, Jaravel & Speiss","Gardner","Stacked DID","TWFE"))

)

Let us now plot the results:
# plot
ggplot(DID.TT.all,aes(x=Method,y=Coef))+

geom_pointrange(aes(ymin=Coef-1.96*Se,ymax=Coef+1.96*Se)) +
ylab("DID estimate") +
xlab("Method") +
expand_limits(y=0) +
coord_flip() +
theme_bw()
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Figure 4.34: Average treatment effect on the treated estimates with various
methods (reference period τ ′ = 1)

Figure 4.34 shows that the true effect of the treatment in the sample (with
weights proportional to actual exposure to the treatment) is correctly estimated
by the Weighted DID estimator using weights varying with exposure, but also by
the correct estimators of Sun and Abraham, Callaway and Sant’Anna, Borusyak,
Jaravel and Speiss and Gardner. The Two-Way fixed Effect estimator finds a
negative treatment effect whereas all treatment effects are positive. The Stacked
DID estimator finds too large a treatment effect, probably because it gives too
much weight to later treatment periods. The de Chaisemartin and d’Haultfoeuille
estimator used here only aims at estimating the effect of the treatment in the
first time period, for which it is consistent.
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Remark. Several open questions remain after this section. They are mostly
cosmetic since thay are questions about properties of the Two-Way Fixed Effects
estimator, and thus do not affect the properties of the correct estimators that
we have studied:

1. Does the Two Way Fixed Effect estimator recover a correct treatment effect
(that is only with positive weights) when the equivalent to Assumption
4.14 holds?

2. Does the event-study Two Way Fixed Effect estimator recover the correct
dynamics of treatment effects when there is no binning of the treated
observations past some date, and there is a never treated group that is
used to estimate the time fixed effects? Our example in Section 4.3.3.2.9.2
seems to suggest that it is so, while the slightly different results of that
estimator with respect to the correct ones in the summary of results above
seems to suggest otherwise. An example where the event-study Two Way
Fixed Effect estimator fails but these conditions hold would be very useful
to understand the scope of Theorem 4.18 better.

3. Does the gain in efficiency obtained by the imputation estimator is still
present when combining all the DID estimates from all the possible com-
parison groups, as in the weigthed DID estimator we have proposed?

4.3.3.3 Estimation of sampling noise

We now need to derive the asymptotic distribution of our estimators in a staggered
DID design. We are going to do that for the Sun and Abraham estimator, which is
the simplest estimator that is estimated by OLS, Within, LSDV, First Difference
or faster TWFE estimators and extends the simple DID estimators to staggered
designs. There are two sets of parameters for which we might want to know
their distribution: the parameter specific to each treated group and relative time
to treatment β̂SAd,τ and the aggregated treatment effect ∆̂Y

TT (k) for some set of
weights wk(d, d′, τ, τ ′). Let’s look at these parameters in turn.

4.3.3.3.1 Estimation of sampling noise for the effect of the treatment
on each group and at each time period We can estimate the β̂SAd,τ with
either repeated cross section data or panel data. Let us start with studying what
happens with repeated cross sections before moving to panel data.

4.3.3.3.1.1 Estimation of sampling noise for the effect of the treat-
ment on each group and at each time period with repeated cross
sections With repeated cross sections, we can only use the OLS DID estimator
of the Sun and Abraham model. The following theorem derives its distribution:

Theorem 4.19 (Asymptotic Distribution of Sun and Abraham Estimator in
Repeated Cross Sections). Under Assumptions 4.7, 4.8, 4.9, 4.12 and 2.3, and
with repeated cross sections of total size N , we have:
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√
N(β̂SAd,τ − βSAd,τ ) d→ N

(
0, 1
pd,τ

[
V[Y 0

i,d−1|Di =∞]
(1− pd,τD )(1− pd,τA )

+
V[Y 0

i,d−1|Di = d]
pd,τD (1− pd,τA )

+
V[Y 0

i,d+τ |Di =∞]
(1− pd,τD )pd,τA

+
V[Y 1

i,d+τ |Di =∞]
pd,τD pd,τA

])

where pd,τ = Pr((Di = d∪Di =∞)∩ (Ti = d− 1∪Ti = d+ τ)), pd,τD = Pr(Di =
d|(Di = d∪Di =∞)∩ (Ti = d−1∪Ti = d+ τ)) and pd,τA = Pr(Ti = d+ τ |(Di =
d ∪Di =∞) ∩ (Ti = d− 1 ∪ Ti = d+ τ)).

Proof. See Section A.3.5.

Remark. Note that Theorem 4.19 is very close to Theorem 4.7. The only
difference is the additional pd,τ term which adjusts the sample size by the actual
number of observations used in the estimation of β̂SAd,τ .

4.3.3.3.1.2 Estimation of sampling noise for the effect of the treat-
ment on each group and at each time period with panel data With
panel data, we can estimate β̂SAd,τ using various sets of estimators: the OLS DID
model, the within transformation of the Sun and Abraham model with individual
dummies, the Least Squares Dummy Variables model estimated by OLS, the
First Difference model and the enhanced estimators (Alternating Projections
and Likelihood Concentration). Theorem 4.15 implies that all these estiamtors
are similar and identical to the individual DID estimators. We can thus use
Theorem 4.6 in order to provide a CLT-based estimate the sampling noise of the
Sun and Abraham estimator of the individual treatment effects in panel data.
The following theorem derives its distribution:

Theorem 4.20 (Asymptotic Distribution of Sun and Abraham Estimator in
Panel Data). Under Assumptions 4.7, 4.8, 4.9, 4.10 and 4.11, and with panel
data with N units observed over T periods, we have:

√
N(β̂SAd,τ − βSAd,τ ) d→ N

(
0, 1
pd,∞

V[Y 1
i,d+τ − Y 0

i,d−1|Di = d]
pd,τD

+
V[Y 0

i,d+τ − Y 0
i,d−1|Di =∞]

1− pd,τD

)
,

where pd,∞ = Pr(Di = d ∪Di =∞).

Proof. See Section A.3.7.
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4.3.3.3.2 Estimation of sampling noise for aggregate treatment ef-
fects The key now is to derive the distribution of the event study parameters
and of the average treatment effect on the treated. We are going to use the
Delta Method in order to do so, but that requires determining the covariance
matrix of the β̂SAd,τ parameters. Under Assumption 4.10 for panel data or 4.12 in
repeated cross sections, most of the β̂SAd,τ parameters are independent from each
other, except for the ones which make use of the same parts of the data.

4.3.3.3.2.1 Estimation of sampling noise for aggregate treatment ef-
fects with repeated cross sections The following theorem derives the
asymptotic distribution of the aggregated treatment on the treated parame-
ter based on the individual DID estimates stemming from Sun and Abraham’s
estimator, in repeated cross sections.

Theorem 4.21 (Asymptotic Distribution of Treatment of the Treated Esti-
mated Using Sun and Abraham Estimator in Repeated Cross Sections). Under
Assumptions 4.7, 4.8, 4.9, 4.12 and 2.3, and with repeated cross sections of total
size N , we have:

√
N(∆̂Y

TTSA(k)−∆Y
TTSA(k)) d→ N

(
0,
∑
d

∑
τ

V (β̂SAd,τ )(wk(d, d− 1, τ,∞))2

+
∑
d6=d′

∑
τ 6=τ ′

Cov(β̂SAd,τ , β̂SAd′,τ ′)wk(d, d− 1, τ,∞)wk(d′, d′ − 1, τ ′,∞)

 ,

where:
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V (β̂SAd,τ ) = 1
pd,τ

[
V[Y 0

i,d−1|Di =∞]
(1− pd,τD )(1− pd,τA )

+
V[Y 0

i,d−1|Di = d]
pd,τD (1− pd,τA )

+
V[Y 0

i,d+τ |Di =∞]
(1− pd,τD )pd,τA

+
V[Y 1

i,d+τ |Di =∞]
pd,τD pd,τA

]

Cov(β̂SAd,τ , β̂SAd′,τ ′) =
pd,τ,d

′,τ ′pd,τ,d
′,τ ′

d−1
pd,τpd′,τ ′

[
V[Y 0

i,d−1|Di =∞](1− pd,τ,d
′,τ ′

D )
(1− pd,τA )(1− pd′,τ ′A )(1− pd,τD )(1− pd′,τ ′D )

+
V[Y 0

i,d−1|Di = d]pd,τ,d
′,τ ′

D

(1− pd,τA )(1− pd′,τ ′A )pd,τD pd
′,τ ′

D

]
when d = d′

=
pd,τ,d

′,τ ′pd,τ,d
′,τ ′

d+τ V[Y 0
i,d+τ |Di =∞](1− pd,τ,d

′,τ ′

D )
pd,τpd′,τ ′pd,τA pd

′,τ ′

A (1− pd,τD )(1− pd′,τ ′D )
when d+ τ = d′ + τ ′

= −
pd,τ,d

′,τ ′pd,τ,d
′,τ ′

d−1 V[Y 0
i,d−1|Di =∞](1− pd,τ,d

′,τ ′

D )
pd,τpd′,τ ′(1− pd,τA )pd′,τ ′A (1− pd,τD )(1− pd′,τ ′D )

when d− 1 = d′ + τ ′

= −
pd,τ,d

′,τ ′pd,τ,d
′,τ ′

d′−1 V[Y 0
i,d′−1|Di =∞](1− pd,τ,d

′,τ ′

D )
pd,τpd′,τ ′pd,τA (1− pd′,τ ′A )(1− pd,τD )(1− pd′,τ ′D )

when d+ τ = d′ − 1

= 0 otherwise,

with pd,τ,d′,τ ′ = Pr(Dd′,τ ′

j Dd,τ
j = 1), pd,τ,d

′,τ ′

d+τ = Pr(Tj = d + τ |Dd′,τ ′

j Dd,τ
j = 1)

and pd,τ,d
′,τ ′

D = Pr(Dd′

j = 1 ∪Dd
j = 1|Dd′,τ ′

j Dd,τ
j = 1).

Proof. See Section A.3.6.

Remark. Note that the covariance terms in Theorem 4.21 make a lot of sense.
First, the proportions used to normalize the variance terms correspond exactly
to the proportion of observations in the relevant groups. Second, the signs of
the covariances are consistent with common sense. When d = d′, the individual
components β̂SAd,τ and β̂SAd′,τ ′ estimate the impact for the same treatment group.
They thus share their baseline means (both for the treated and control group
observed at period d−1). As a consequence, they are positively correlated. When
d+ τ = d′ + τ ′, both groups share the same post-treatment period, and thus use
the same observations from the control group to build the After period, thereby
generating a positive correlation again. When d− 1 = d′ + τ ′ or d′ − 1 = d+ τ ,
both estimators share the same group of observations from the control group.
One uses them as a reference period, while the other uses the same observations
as the after treatment period. As a consequence, the estimators are negatively
correlated in that case.
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4.3.3.3.2.2 Estimation of sampling noise for aggregate treatment ef-
fects with panel data Finally, we need to determine the asymptotic distri-
bution of the aggregate average treatment effect on the treated ∆Y

TT (k).

Theorem 4.22 (Asymptotic Distribution of Treatment of the Treated Estimated
Using Sun and Abraham Estimator in Panel Data). Under Assumptions 4.7,
4.8, 4.9, 4.10 and 4.11, and with panel data containing a total of N units, we
have:

√
N(∆̂Y

TTSA(k)−∆Y
TTSA(k)) d→ N

(
0,
∑
d

∑
τ

VP (β̂SAd,τ )(wk(d, d− 1, τ,∞))2

+
∑
d6=d′

∑
τ 6=τ ′

CovP (β̂SAd,τ , β̂SAd′,τ ′)wk(d, d− 1, τ,∞)wk(d′, d′ − 1, τ ′,∞)

 ,

where:

VP (β̂SAd,τ ) = 1
pd,τ

V[Y 1
i,d+τ − Y 0

i,d−1|Di = d]
pd,τD

+
V[Y 0

i,d+τ − Y 0
i,d−1|Di =∞]

1− pd,τD
CovP (β̂SAd,τ , β̂SAd′,τ ′) = when d = d′

= when d+ τ = d′ + τ ′

= when d− 1 = d′ + τ ′

= when d+ τ = d′ − 1
= 0 otherwise,

Proof. See Section A.3.8.

4.3.4 Difference In Differences with Instrumental Vari-
ables
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Observational Methods

5.1 Imputation methods
Generalized fixed effects methods
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https://yiqingxu.org/packages/fect/fect.html
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Chapter 6

Threats to the validity of
Causal Inference

In this final section, I want to discuss more generally about the possible threats
to the validity of methods of causaliInference. Most of these threast stem from
the fact that, much as particles do when physicists try to measure their position
and velocity, human beings react to our experimental devices in sometimes
unexpected ways. It is classical to make a disctinction between two threat and
one specific set of problems:

1. Threats to internal validity: these are the threats that vitiate the result
of the experiment in the sample at hand, even when only looking at the
Intention to Treat Effect. They also include threats to the exclusion
restriction assumption.

2. Threats to the measurement of precision
3. Threats to external validity: these are the threats that make the extension

of the results from one experiment to the same population at another
period of to another population dubious.

4. Ethical and political issues

6.1 Threats to internal validity
Threats to internal validity are the problems that might make the results of the
experiment not measure the effect of the treatment of interest in the ongoing
sample. Let’s examine the most important ones in turn.

6.1.1 Survey bias
There is survey bias if the mere fact of having to answer to a survey alters
the outcomes of the surveyed individuals. For example, administering a health
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survey might make you pay more attention to your health and as a consequence
improve it. Survey bias alters the measured impact of the treatment since it
alters the behavior of the control group. As a result, the estimated effect of the
treatment might be biased.

Remark. Note that survey bias might affect all the estimators presented in
this book, including natural experimental and observational estimators. All
estimators rely on measuring something and thus might be affected by survey
bias.

Actually, RCTs might be able to avoid survey bias whereas other methods
generally cannot. Indeed, survey bias generally occurs with repeated sampling:
surveying at baseline might trigger a response by individuals, and thus bias
the measurement at the end of the experiment. RCTs can avoid this issue
by bypassing the baseline survey, or at least collecting baseline information
on a subsample of the experimental sample. Other estimators that might be
able to avoid this problem are DID, where the repeated cross section estimator
eschews survey bias, and RDD and IV, which generally use only cross sectional
information. Matching in general requires observations for the same individual
over time, so that avoiding possible survey bias is impossible.

Remark. Do we have evidence of the existence and extent of survey bias? A
paper by Zwane et al (2010) shows that there is extensive survey bias in 2 out
of 5 experiments.

In the first example, the authors show that being surveyed more frequently
(every two weeks vs every six months) for the extent of diarrhea prevalence
and use of chlorine decontamination increases the use of chlorine, decreases
diarrhea prevalence and decreases the effect of a spring protection program, to
the extent that it becomes null in the frequent survey sample, whereas it is large
and positive in the infrequent survey sample. The authors speculate that the
frequent surveys act as a reminder for chlorinating water, which is a substitute
for well protection.

In a second experiment, the authors randomly run a baseline survey on 80% of
the households tha would be later included in a RCT where health insurance
would be offered at randomly selected prices. The baseline survey includes
questions about health and health insurance, but does not mention the particular
product that will be offered later. The authors find a small imprecise increase in
insurance take up in the group having undergone the baseline survey (5% ± 6.8),
non significant at usual levels of confidence. They also find no evidence of impact
of the baseline survey on the response of households to the price incentive.

In a third experiment, the authors report on the effect of being surveyed with
a survey continaing questions on health status and health insurance on the
subsequent adoption of health insurance. They find evidence that the baseline
survey has increased the adoption of health insurance by 6.7% ± 6.6, from a
mean of 26.4% in the control group. The effect dissipates over time though and
becomes much smaller 15 to 18 months after the treatment.

https://www.pnas.org/content/108/5/1821.short
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In a fourth experiment, the authors randomly selected 60% of targeted households
to be included in a baseline survey including wuestions on household finances
and borrowing opportunities.
The sample was then prospected by a micro-credit firm. The aurhors do not
find higher micro-credit take-up among households surveyed at baseline (-0.009
± 0.048, with a baseline take up rate of 0.166). Note that the estimates are
imprecise though.

In a fifth experiment, the authors randomly assigned the order in which house-
holds had to be contacted for a baseline survey, along with a fixed number of
households to be sruveyed by village. The survey contained questions about
finance and microfinancne use. Also, the survey explicitely mentioned that house-
hods were interviewed because they were patrons of a micro-finance provider.
Sunbsequently, households had to decide whether or not to renew their loans
from the micro-finance provider. The authors do not evidence of an effect of
being surveyed on the subsequent decision to renew the loan (-0.005 ± 0.026
from a baseline rate of 0.769).

6.1.2 Experimenter bias
6.1.3 Substitution bias
6.1.4 Diffusion bias

6.2 Threats to the measurement of precision
6.2.1 Insufficient precision
6.2.2 Clustering

6.3 Threats to external validity
6.3.1 Randomization bias
6.3.2 Equilibrium effects
6.3.3 Context effects
6.3.4 Site selection bias
6.3.5 Publication bias
6.3.6 Ethical and political issues
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Part III

Additional Topics
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Chapter 7

Power Analysis
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Chapter 8

Placebo Tests
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Chapter 9

Clustering
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Chapter 10

LaLonde Tests
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Chapter 11

Diffusion effects
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Chapter 12

Distributional effects
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Chapter 13

Meta-analysis and
Publication Bias

When several research teams work on a similar topic, they obtain and publish
several estimates for the same program of for similar programs. For example,
teams of doctors regularly test the same treatment on different samples or
populations in order to refine the estimated effect. Similarly, economists report
on the effects of similar types of programs (Conditional and Unconditional Cash
Transfers, Job Training Programs, microcredit, etc) implemented in different
countries.

Meta-analysis aims at summarizing and synthetizing the available evidence with
two main goals in mind:

1. Increasing precision by providing an average estimated effect combining
several estimates

2. Explaining variations in treatment effectiveness by relating changes in
effect size to changes in sample characteristics.

One key issue that meta-analysis has to face – actually, we all have to face
it, meta-analysis simply makes it more apparent – is that of publication bias.
Publication bias is due to the fact that referees and editors have a marked
preference for publishing statistically significant results. The problem with this
approach is that the distribution of published results is going to be censored
on the left: we will have more statistically significant results in the published
record, and as a consequence, the average published result will be an upward
biased estimate of the true treatment effect in the population. This is potentially
a very severe problem if the amount of censoring due to publication bias is large.
Eventually, this hinges on the true distribution of treatment effects: if it is
centered on zero or close to zero, we run the risk of having very large publication
bias.
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In this chapter, I present first the tools for meta-analysis, and I then move on to
testing and correcting for publication bias. Most of the material presented here
stems from the reference book by Hedges and Olkin. When needed, I update
this book with new references that I then cite. the R code comes mainly from a
wonderful set of slides explaining of the metafor package works.

13.1 Meta-analysis
There are several approaches and refinements to meta-analysis. In this section, I
am going to present only the most important ones. I’ll defer the reader to other
more specialized publications if needed.

I first present the basics of meta-analysis: the constitution and structure of the
sample. Second, I present the problems of the intuitive “vote-counting” method.
Third, I present the methods used when treatment effects are homogeneous
across studies, called fixed effects models. Fourth, I move to the methods used
when effects are heterogeneous across studies, or random effects models, and the
tests used to decide whether we are in a fixed or random effects framework. Fifth,
I present meta-regression, that tries to capture treatment effect heterogeneity by
including covariates. Finally, I present constantly updated meta-analysis, a way
to aggregate results of individual studies as they come.

13.1.1 Basic setting
The basic setting for a meta-analysis is that you have access to a list of estimates
for the effect of a given program and for their precision. These estimates come
from the literature, searching published and unpublished sources alike. This data
is usually collected after an extensive search of bibliographic databases. Then,
one has to select among all the studies selected by the search the ones that are
actualy relevant. This is the most excruciating part of a meta-analysis, since a lot
of the studies selected by hte search algorithm are actually irrelevant. Finally, one
has to extract from each relevant paper an estimate of the effect of the treatment
and of its precision. In general, one tries to choose standardized estimates such
as the effect size (see Section 2.1.6 for a definition) and its standard error. After

all this process, we should end up with a dataset like:
{

(θ̂k, σ̂k)
}N
k=1

, with θ̂k
the estimated effect size, σ̂k its estimated standard error, and N the number of
included studies.

Example 13.1. Let’s see how such a dataset would look like? Let’s build one
from our simulations.
N.sample <- c(100,1000,10000,100000)
N.plot.ES.CLT <- c(10,7,2,1)
data.meta <- data.frame(ES=numeric(),

se=numeric())

https://www.sciencedirect.com/book/9780080570655/statistical-methods-for-meta-analysis
http://www.edii.uclm.es/~useR-2013/Tutorials/kovalchik/kovalchik_meta_tutorial.pdf
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se.ww.CLT.ES <- function(N,v1,v0,p){
return(sqrt((v1/p+v0/(1-p))/N)/v0)

}

for (k in 1:length(N.sample)){
set.seed(1234)
simuls.ww[[k]]$se.ES <- se.ww.CLT.ES(N.sample[[k]],simuls.ww[[k]][,'V1'],simuls.ww[[k]][,'V0'],simuls.ww[[k]][,'p'])
test.ES <- simuls.ww[[k]][sample(N.plot.ES.CLT[[k]]),c('ES','se.ES')]
test.ES$N <- rep(N.sample[[k]],N.plot.ES.CLT[[k]])
data.meta <- rbind(data.meta,test.ES)
}

data.meta$id <- 1:nrow(data.meta)
#data.meta$N <- factor(data.meta$N,levels(N.sample))

ggplot(data.meta, aes(x=as.factor(id), y=ES)) +
geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=ES-qnorm((delta.2+1)/2)*se.ES, ymax=ES+qnorm((delta.2+1)/2)*se.ES), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=ES(param)), colour="#990000", linetype="dashed")+
xlab("Studies")+
ylab("Effect size")+
theme_bw()
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Figure 13.1: Example data set: effect sizes and confidence intervals with δ =
0.95

Figure 13.1 shows the resulting sample. I’ve selected 10 studies with N = 100,
7 studies with N = 1000, 2 studies with N = 104, and 1 study with N = 105.
The studies are represented in that order, mimicking the increasing sample size
of studies that accumulate evidence on a treatment, probably with studies with
a small sample size at first, and only large studies at the end for the most
promising treatments.
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13.1.2 Why vote-counting does not work
Vote-counting is an alternative to weighted average or meta-regression. The
term, coined by Light and Smith (1971), refers to the practice of counting the
number of studies that fall under one of three categories:

• Significant and positive,
• Insignificant,
• Significant and negative.

A vote-counting approach concludes that there is evidence in favor of the treat-
ment when the majority of effects fall in the first category, that there is no
evidence that the treatment has an impact whenthe majority of studies fall in
the second category, and that there is evidence that the treatment is defavorable
when the majority of studies fall in the third category. In general, majority is
evaluated at 33%.

The main problem with the vote counting approach is that it does not give
more weight to more precise studies. As a consequence, there is a very realistic
possibility that the probability of finding the truth decrease as we add more
studies to the meta-analysis.

Let’s see how this could happen with a simulation taken from HEdges and Olkin’s
book. Let p be the probaility that a given result is significant and positive. p
depends on the sample size n of the study, and on the true treatment effect, θ:

p =
∫ ∞
Cα

f(t; θ, n),

where f is the density of the test statistic T used to evaluate whether the effect
is significant or not, and Cα is the critical value of the test T . If n and θ are
constant over studies (for simplicity), the process of accumulating significant
results can be modelled as a binomial with parameter p. The probability that over
K studies, we have a proportion of significant results larger than a pre-specified
threshold (let’s say C0) is equal to:

Pr(X
K

> C0) =
K∑

k=int(C0k)+1

(
K
k

)
pk(1− p)K−k,

where int(a) is the greatest integer larger or equal to a and 0 ≤ C0 ≤ 1. In order
to use this formula, we simply have to choose a test. Let’s choose the two-sided
t-test of a zero treatment effect in an RCT with equal tozes for treated and
control groups. In that case, p is simply the power of the test. In Chapter 7, we
have derived a formula for the power of this test when N is large:
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κ = Φ

 βA√
V[Ê]

− Φ−1
(

1− α

2

) ,

with V[Ê] = C(Ê)
N and C(Ê) the variance of the estimator across sampling

replications. Let’s make the simplifying assumption that the treatment effect
is constant, so that the variance of the estimator is basically the variance of
the outcomes. Let’s also assume that we are working with effect sizes, so that
our outcomes are normalized to have mean zero and variance one. Under these
assumptions, C(Ê) = 1 and we can implement the power formula:
PowerTwoside <- function(betaA,alpha,N,CE=1){
return(pnorm(-betaA/sqrt(CE/N)-qnorm(1-alpha/2))+pnorm(betaA/sqrt(CE/N)-qnorm(1-alpha/2)))

}

PowerTwosideStudent <- function(betaA,alpha,N,CE=1){
return(pt(-betaA/sqrt(CE/N)-qnorm(1-alpha/2),df=N-1)+pt(betaA/sqrt(CE/N)-qnorm(1-alpha/2),df=N-1))

}

VoteCounting <- function(betaA,C0,K,...){
return(pbinom(q=C0*K,size=K,prob=PowerTwosideStudent(betaA=betaA,...),lower.tail = FALSE))

}

PowerTwosideStudent(betaA=0.1,alpha=0.05,N=300)
VoteCounting(C0=.33,K=3000,betaA=0.1,alpha=0.05,N=300)

Sample.size <- c(20,50,100,200,300)
BetaA <- seq(0.1,1.5,by=0.1)
K.list <- c(10,20,30,50,100,1000)

power.vote <- data.frame("Power"= 0,'BetaA'= 0,'N'= 0,'K'= 0)

#power.vote <- sapply(BetaA,VoteCounting,C0=.33,K=K.list[[1]],alpha=0.05,N=Sample.size[[1]])
#power.vote <- cbind(power.vote,BetaA,Sample.size[[1]],K.list[[1]])

for (j in (1:length(K.list))){
for (k in (1:length(Sample.size))){
power.vote.int <- sapply(BetaA,VoteCounting,C0=.33,K=K.list[[j]],alpha=0.05,N=Sample.size[[k]])
power.vote.int <- cbind(power.vote.int,BetaA,Sample.size[[k]],K.list[[j]])
colnames(power.vote.int) <- c('Power','BetaA','N','K')
power.vote <- rbind(power.vote,power.vote.int)

}
}
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power.vote <- power.vote[-1,]
power.vote$K.int <- power.vote$K
power.vote$K <- as.factor(power.vote$K)

#ggplot(data=filter(power.vote,K==10),aes(x=N,y=Power,group=as.factor(BetaA),shape=as.factor(BetaA),color=as.factor(BetaA)))+
# geom_line()+
# geom_point()

ggplot(data=filter(power.vote,BetaA==0.1),aes(x=N,y=Power,group=K,shape=K,color=K))+
geom_line()+
geom_point()+
xlab("N (BetaA=0.1)")+
ylab("Detection probability of the vote counting rule")+
theme_bw() +
scale_fill_discrete(name="K")

ggplot(data=filter(power.vote,BetaA==0.2),aes(x=N,y=Power,group=K,shape=K,color=K))+
geom_line()+
geom_point()+
xlab("N (BetaA=0.2)")+
ylab("Detection probability of the vote counting rule")+
theme_bw()
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Figure 13.2: Detection probability of the vote counting rule

Figure 13.2 shows that the vote counting rule has a very inconvenient property:
when the power of the test is lower than 33%, the probability that the vote
counting rule detects a true effect decreases with the number of studies included
in the meta-analysis, and converges to zero when the number of studies gets
large.
For example, when N = 100 and βA = 0.1, the probability of detecting the
effect using the vote counting method is equal to 0.076 with K = 10 studies



13.1. META-ANALYSIS 303

and decreases to 0.043 when K = 20, and 0 when K = 100. The pattern is
reverse for more powerful studies, such as when N = 300 and βA = 0.1 or when
N = 100 and βA = 0.2. The intuition for this result is that the vote counting
method does not average out the sampling noise in each individual study.

13.1.3 Meta-analysis when treatment effects are homoge-
neous: the fixed effects approach

The key idea of meta-analysis with fixed effects is to combine the effect size
estimates stemming from different studies, weighing them by their relative
precision.

Definition 13.1 (Weighted Meta-Analytic Estimator). The weighted meta-
analytic estimator is

θ̄ =
N∑
k=1

wkθ̂k with wk =
1
σ̂2
k∑N

k=1
1
σ̂2
k

.

Under some assumptions, the estimator θ̄ converges to the true effect of the
treatment. Let’s delineate these assumptions.

Definition 13.2 (Homogeneous Treatment Effect). Each θ̂k converges to the
same treatment effect θ.

Assumption 13.2 imposes that all the studies have been drawn from the same
population, where the treatment effect is a constant.

Definition 13.3 (Independence of Estimates). The θ̂k are independent from
each other.

Assumption 13.3 imposes that all the studies estimates are independent from
each other. That means that they do not share sampling units and that they
are not affected by common shocks.

Under these assumptions, we can show two important results.

Theorem 13.1 (Consistency of the Weighted Meta-Analytic Estimator). Under
Assumptions 13.2 and 13.3, when the sample size of each study goes to infinity,
θ̄ ≈ θ.

Proof. The Law of Large Number applied to each sample gives the fact that
the estimator is a weighted sum of θ with weights summing to one. Hence the
result.

Theorem 13.1 says that the error we are making around the true effect of the
treatment goes to zero as the sample size in each study decrease. This is great:
aggregating the studies is thus going to get us to the truth.
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Remark. One interesting question is whether Theorem 13.1 also holds when the
size of the individual studies remains fixed and the number of studies goes to
infinity, which seems a more natural way to do asymptotics in a meta-analysis.
I’m pretty sure that is the case. Indeed, the studies constitute an enormous
sample in which we take the average outcomes of the treated on the one hand
and of the untreated on the other. These averages differ from the usual ones
in the Law of Large Numbers only by the fact that the weights are not equal
to one. But they (i) are independent from the outcomes and (ii) sum to one.
As a consequence, I’m pretty sure the Law of Large Numbers also apply in this
dimension.

Check if this is a consequence of Kolmogorov’s Law of Large Numbers.

Theorem 13.2 (Asymptotic Distribution of the Weighted Meta-Analytic Esti-
mator). Under Assumptions 13.2 and 13.3, when the sample size of each study
goes to infinity, θ̄ d→ N (θ, σ2), with

σ2 = 1∑N
k=1

1
σ2
k

.

Proof. To do using the Lindenberg-Levy version of the Central Limit
Theorem.

Theorem 13.2 shows that the distribution of the weighted meta-analytic estimator
converges to a normal, which is very convenient in order to compute sampling
noise. In order to obtain an estimator σ̂2 of the variance of the meta-analytic
estimator, we can simply replace the individual variance terms by their estimates:
σ̂2
k.

Remark. I’ve taken Theorem 13.2 from Hedges and Olkin, but I think it is much
more interesting and correct when the asymptotics goes in the number of studies.

Remark. According to Hedges and Olkin, the weighted meta-analytic estimator
is the most efficient estimator available.
wmae <- function(theta,sigma2){

return(c(weighted.mean(theta,(1/sigma2)/(sum(1/sigma2))),1/sum(1/sigma2)))
}

Example 13.2. Let’s use our meta-analytic estimator to estimate the effect
size of our treatment.

The estimated treatment effect size with our sample is 0.19 ± 0.02. A very
simple way to implement such an estimator in R is to use the rma command of
the metafor package.
data.meta$var.ES <- data.meta$se.ESˆ2
meta.example.FE <- rma(yi = data.meta$ES,vi=data.meta$var.ES,method="FE")
summary(meta.example.FE)
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##
## Fixed-Effects Model (k = 20)
##
## logLik deviance AIC BIC AICc
## 16.1375 12.7060 -30.2751 -29.2793 -30.0529
##
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 0.67
##
## Test for Heterogeneity:
## Q(df = 19) = 12.7060, p-val = 0.8533
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.1950 0.0079 24.6975 <.0001 0.1795 0.2104 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As seen above, the metafor package yields a meta-analytic estimate of 0.19 ±
0.02, as we have found using the weighted meta-analytic estimator.

It is customary to present the results of a meta-analysis using a forest plot. A
forest plows all the individual estimates along with the aggregated estimate.
Figure 13.3 presents the forest plot for our example using the very convenient
forest function in the metafor package:
forest(meta.example.FE,slab = paste('Study',data.meta$id,sep=' '),xlab='Estimated Meta-analytic Parameter')

FE Model

−1 −0.5 0 0.5 1 1.5

Estimated Meta−analytic Parameter

Study 20
Study 19
Study 18
Study 17
Study 16
Study 15
Study 14
Study 13
Study 12
Study 11
Study 10
Study 9
Study 8
Study 7
Study 6
Study 5
Study 4
Study 3
Study 2
Study 1

 0.19 [ 0.17, 0.21]
 0.18 [ 0.13, 0.24]
 0.21 [ 0.15, 0.26]
 0.29 [ 0.10, 0.47]

 0.13 [−0.05, 0.32]
 0.30 [ 0.13, 0.48]
 0.41 [ 0.22, 0.59]
 0.25 [ 0.09, 0.42]
 0.18 [ 0.01, 0.34]

 0.17 [−0.01, 0.35]
 0.12 [−0.47, 0.71]
 0.12 [−0.54, 0.79]
 0.23 [−0.18, 0.65]
 0.28 [−0.22, 0.78]

−0.10 [−0.71, 0.50]
 0.16 [−0.37, 0.69]
 0.30 [−0.45, 1.04]
 0.51 [ 0.01, 1.01]

 0.19 [−0.44, 0.81]
−0.10 [−0.81, 0.62]

 0.19 [ 0.18, 0.21]

Figure 13.3: Example data set: forest plot
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13.1.4 Meta-analysis when treatment effects are hetero-
geneous: the random effects approach

One key assumption that we have just made so far is that of homogeneous
treatment effect. We have worked under the assumption that each study was
drawn from the same population, where the treatment effect is a constant. Why
would the treatment effects differ in each study?

1. We do not study exactly the same treatment, but a family of similar
treatments. Each individual study covers a particular iteration of the
treatment, each with its idiosyncratic parameterization. The particular
value of the transfer in a Cash Transfer program, or of the conditions
to receive it, or the length of payment, whether it is in one time or
over some period, might make a difference, for example. The same is
true for Job Training Programs, Payments for Environmental Services,
microcredit, graduation programs, nudges, etc. Actually, most programs
that economists study differ from one implementation to the next. In
psychology and medecine, most treatments are accompanied by a rigorous
protocol that makes them much more homogeneous.

2. The population on which the treatment is applied varies. For example,
similar Job Training Programs or microcredit initiatives might have very
different outcomes depending on the business cycle. Education interven-
tions might have very different effects depending on the background of the
students on which they are tested. A drug might interact with patients’
phenotype and genotype to generate different effects, and the populations
from which the experimental samples are drawn do not have to be similar.
As an extreme example, think of a vaccine tested in a population where
the prevalence of a disease is null. The treatment effect is zero. Now, test
the vaccine in a population where the disease is endemic: the treatment
effect might be huge.

When each study draws a treatment effect from a distinct population, meta-
analysis has to take into account that treatment effects are heterogeneous. The
main consequence of treatment effect heterogeneity is that the weighting approach
we have used so far underestimates the uncertainty around the true effect, since
it does not acknowledge that there is additional variation within each study.

There are two main ways to account for heterogeneity in meta-analysis:

1. Random effects allowing for additional random noise in each study.
2. Meta-regression trying to capture the heterogeneity in treatment effects

with observed covariates.

In this section, we study the random effects estimator, and the next section will
cover the meta-regression estimator. Before implementing the random effects
estimator, we need to decide whether there is heterogeneity in treatment effects
or not.

Generate noise right now and show the plot.
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13.1.4.1 Estimating the heterogeneity of treatment effects

A necessary first step is to estimate the variance in treatment effects that is due
to treatment effect heterogeneity, beyond sampling noise. The observed effect
size estimate for a given study k is modelled as follows:

θ̂k = α+ εk + νk,

where εk is due to sampling noise and νk is due to the heterogeneity in effect sizes
across sites, while α is the average of the effect size accross all populations. We
denote the variance of νk as τ2. νk is the random effect that gives the random
effects approach its name.

There are several ways to estimate this variation. I’m gooing to start with the
most intuitive one, Hedges’ estimator, and I’ll then move on to the other ones
available. I’ll conclude with the formal statistical tests used to decide whether
treatment effects are heterogeneous or not.

13.1.4.1.1 Hedges’ estimator of treatment effect heterogeneity Since
Hedges, τ2 is estimated as the residual variance in effect sizes that is not explained
by sampling noise. In order to compute this estimator, first estimate the overall
variance in θ̂k, then estimate the component of the variance due to sampling
noise and finally take the difference between the two. Hedges’ estimator of the
overall variance in effect sizes is:

τ̂2 = σ̂2
tot − σ̂2

ε ,

with

ˆσ2
tot = 1

N

N∑
k=1

(θ̂k − θ̄u)2

θ̄u = 1
N

N∑
k=1

θ̂k

σ̂2
ε = 1

N

N∑
k=1

σ̂2
k.

Remark. Hedges actually uses the unbiased estimator adapted to small samples
and thus replaces N by N − 1 in the first equation.

Example 13.3. Let’s compute Hedges’ esimator for τ2 in our numerical example.
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Let’s first define a few functions to compute each part:
tau.2 <- function(theta,vartheta){

return(var(theta)-mean(vartheta))
}
tau.2.theta <- tau.2(data.meta$ES,data.meta$se.ESˆ2)

Our estimate of τ2 in our example is thus -0.03. This estimate is small, suggesting
that there is no additional variance in the treatment effects on top of sammling
variation, as we know is the case and has already been suggested by the results
of the Q statistic. Let’s now create a new sample of effect sizes where we add
noise to each estimate stemming not from sampling, but from heterogeneity in
treatment effects across sites and studies.
tau <- c(0.5,1)
set.seed(1234)
data.meta$theta.1 <- data.meta$ES + rnorm(nrow(data.meta),mean=0,sd=tau[[1]])
data.meta$theta.2 <- data.meta$ES + rnorm(nrow(data.meta),mean=0,sd=tau[[2]])

I’ve simulated two new vectors of estimates for θ, both obtained adding a mean-
zero normally distributed noise to the initial estimates of θ, one with a standard
deviation of 0.5 and the other of 1. Let’s visualize our two new datasets:
ggplot(data.meta, aes(x=as.factor(id), y=ES)) +

geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=ES-qnorm((delta.2+1)/2)*se.ES, ymax=ES+qnorm((delta.2+1)/2)*se.ES), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=ES(param)), colour="#990000", linetype="dashed")+
xlab(expression(paste('Studies',tauˆ2,'=',0,sep=' ')))+
ylab("Effect size")+
theme_bw()+
ylim(-2,2)

ggplot(data.meta, aes(x=as.factor(id), y=theta.1)) +
geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=theta.1-qnorm((delta.2+1)/2)*se.ES, ymax=theta.1+qnorm((delta.2+1)/2)*se.ES), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=ES(param)), colour="#990000", linetype="dashed")+
xlab(expression(paste('Studies',tauˆ2,'=',tau[[1]],sep=' ')))+
ylab("Effect size")+
theme_bw()+
ylim(-2,2)

ggplot(data.meta, aes(x=as.factor(id), y=theta.2)) +
geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=theta.2-qnorm((delta.2+1)/2)*se.ES, ymax=theta.2+qnorm((delta.2+1)/2)*se.ES), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=ES(param)), colour="#990000", linetype="dashed")+
xlab(expression(paste('Studies',tauˆ2,'=',tau[[2]],sep=' ')))+
ylab("Effect size")+
theme_bw()+
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Figure 13.4: Datasets with treatment effect heterogeneity

Let’s see now how Hedge’s estimator performs:
tau.2.theta.1 <- tau.2(data.meta$theta.1,data.meta$se.ESˆ2)
tau.2.theta.2 <- tau.2(data.meta$theta.2,data.meta$se.ESˆ2)

Hedges’ estimates of τ2 in our examples are thus 0.21 and 0.73 respectively,
while the true values are, respectively 0.25 and 1.

13.1.4.1.2 Other estimators of treatment effects heterogeneity τ2 is
a pretty difficult measure of treatment effect heterogeneity to interpret. That’s
why other indicators have been built that are easier to interpret. We are going
to review several of them in this section.

The first alternative or complement to τ2 is Higgin’s I2:

I2 = Q− (N − 1)
Q

∗ 100

The interpretation of I2 is pretty straightforward: it is the distance between
the actual value of the Q statistic and its value under the null of treatment
effect homogeneity (it is equal to the number of studies N , with a correction
for degress of freedom). It can also be interpreted as the fraction of the overall
variance (remember that Q is the sum of variance ratios) that is not explained
by within study sampling noise.

Another complement to τ2 is H2:

H2 = Q

N − 1

If H2 is above one, then there is unexplained heterogeneity, again by the fact
that Q has mean N − 1 under the null of treatment effect homogeneity.
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Finally, we can also define the Intra Class Correlation (ICC), which precisely
measures the share of total variance attributable to treatment effect heterogeneity:

ICC = τ2

τ2 + S2

Where S2 is the amount of variance due to sampling noise. An estimator for S2

is:

S2 =
(N − 1)

∑N
k=1

1
σ2
k

(
∑N
k=1

1
σ2
k

)2 −
∑N
k=1( 1

σ2
k

)2
.

I do not understand the formula for S2. Why does it estimate what
we want? I’d take the average variance.

ICC and I2 are related by the following very simple relation: I2 = ICC ∗ 100.

Example 13.4. Let’s see how these three estimators look like in our example.
The cool thing is that rma computes these estimators by default, so that a simple
call to summary() is going to show them. The default random effects estimator
is REML, which is deemed to be the best of them all according to simulations
(Viechtbauer, 2002).
meta.example.RE.ES <- rma(yi = data.meta$ES,vi=data.meta$var.ES)
meta.example.RE.theta.1 <- rma(yi = data.meta$theta.1,vi=data.meta$var.ES)
meta.example.RE.theta.2 <- rma(yi = data.meta$theta.2,vi=data.meta$var.ES)

tau2.hat <- c(meta.example.RE.ES$tau2,meta.example.RE.theta.1$tau2,meta.example.RE.theta.2$tau2)
I2 <- c(meta.example.RE.theta.1$I2,meta.example.RE.theta.2$I2,meta.example.RE.ES$I2)
H2 <- c(meta.example.RE.theta.1$H2,meta.example.RE.theta.2$H2,meta.example.RE.ES$H2)

# illustration of results returned by summary
summary(meta.example.RE.theta.2)

##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -24.7342 49.4684 53.4684 55.3573 54.2184
##
## tau^2 (estimated amount of total heterogeneity): 0.7582 (SE = 0.2608)
## tau (square root of estimated tau^2 value): 0.8708
## I^2 (total heterogeneity / total variability): 99.59%
## H^2 (total variability / sampling variability): 244.24

https://journals.sagepub.com/doi/abs/10.3102/10769986030003261


13.1. META-ANALYSIS 311

##
## Test for Heterogeneity:
## Q(df = 19) = 1932.1460, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.5964 0.2006 2.9728 0.0030 0.2032 0.9896 **
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimate of I2 in our example is of 0 when τ2 is equal to 0, of 98.77 when
τ2 is equal to 0.25 and of 99.59 when τ2 is equal to 1. The estimate of H2 in
our example is of 1 when τ2 is equal to 0, of 81.45 when τ2 is equal to 0.25 and
of 244.24 when τ2 is equal to 1.

13.1.4.1.3 Testing for the homogeneity of treatment effects What
can we do in order to test whether there is heterogeneity in treatment effects?
One way is to build an index comparing the usual variation in treatment effects
stemming from sampling noise to the one stemming from variation between
studies. If we find that the variation between studies dwarves the variation due
to sampling noise in each study, then there is some heterogeneity for sure. One
statistics that does that is the Q statistic where the variation in treatment effects
between studies is estimated using the difference between the individual effect
size and the average one squared:

Q =
N∑
k=1

(θ̂k − θ̄)2

σ̂2
k

.

What is great with the Q statistic is that, under the Null hypothesis that all the
treatment effects are equal to the same constant, it is distributed asymptotically
as a χ2 distribution with N − 1 degrees of freedom, and thus it can directly be
used to test for the hypothesis of homogeneous treatment effects.

Example 13.5. In our example, we have already computed the Q statistic when
we have used the rma function in the metafor package. In order to access it,
we just need to extract it using meta.example.FE$QE for the Q statistic and
meta.example.FE$QEp for its p-value.

The Q statistic in our example has value 12.71, with associated p-value 0.85.
We end up not rejecting homogeneity, which is correct.

Remark. The problem with using test statistics for testing for treatment ef-
fect homogeneity is that, when precision increases, we might end up rejecting
homogeneity despite the fact that it is there.
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Test with N = 105.

Remark. The χ2 distribution with k degrees of freedom is asymptotically dis-
tributed as a normal with mean k and variance 2k. So, when k is large, a good
rule of thumb for assessing the homogeneity of the treatment effect estimates
is to compare the Q statistic to the number of studies. If it is much larger,
homogeneity is probably not guaranteed.

13.1.4.2 Random effects models

Hedges proposes a new estimator for the average effect of the treatment, an
estimator that accounts for the additional noise due to heterogeneous treatment
effects accross sites.

Definition 13.4 (Hedges Weighted Meta-Analytic Estimator). Hedges weighted
meta-analytic estimator for in the presence of random effects is

θ̄H =
N∑
k=1

vkθ̂k with vk =
1

σ̂2
k
+τ̂2∑N

k=1
1

σ̂2
k
+τ̂2

.

Hwmae <- function(theta,sigma2,tau2){
return(c(weighted.mean(theta,(1/sigma2)/(sum(1/(sigma2+tau2))),1/sum(1/sigma2+tau2))))

}
ES.H.theta.1 <- Hwmae(data.meta$theta.1,data.meta$se.ESˆ2,tau.2.theta.1)
ES.H.theta.2 <- Hwmae(data.meta$theta.2,data.meta$se.ESˆ2,tau.2.theta.2)

Example 13.6. Let’s see how Hedges estimator performs in our example.

Hedges’ estimates of the average effect size is equal to 0.3 and 0.65 respectively,
while the true value is NA. The main problem with Hedges’ estimator when
treatment effects are heterogeneous is that very large effects for the more precise
estimators dramatically affect the estimate.

Remark. Hedges’ estimate of τ2 is slightly negative, which is problem, since a
variance is always positive. Other estimators of τ2 have been proposed in the
literature to account for this fact and to respond to various shortcomings of
Hedges’ approach. We will present them succinctly since they are part of the
metafor package. These other estimators have bames such as . They are very
well described in this amazing set of slides. Besides Hedges’ (denoted ‘HE’ in
R), the other estimators are named:

• DerSimonian-Laird (‘DL’)
• Hunter-Schmidt (‘HS’)
• Sidik-Jonkman (‘SJ’)
• Maximum-likelihood (‘ML’)
• Restricted maximum-likelihood (‘REML’)
• Empirical Bayes (‘EB’)

http://www.edii.uclm.es/~useR-2013/Tutorials/kovalchik/kovalchik_meta_tutorial.pdf
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I’ll detail how they work later.

Detail other estimators of tau.

Example 13.7. For the moment, let’s see how they perform in our numerical
example.
estimators <- c("DL", "REML", "HE", "HS", "SJ", "ML", "EB")
meta.example.RE.theta.1.tau2 <- sapply(estimators,function(method){return(rma(yi = data.meta$theta.1,vi=data.meta$var.ES,method=method)$tau2)})
meta.example.RE.theta.2.tau2 <- sapply(estimators,function(method){return(rma(yi = data.meta$theta.2,vi=data.meta$var.ES,method=method)$tau2)})
#meta.example.RE <- sapply(estimators,function(method){return(rma(yi = data.meta$theta.1,vi=data.meta$var.ES,method=method))})
#meta.example.RE.tau2.test <- unlist(lapply(meta.example.RE,'[[','tau2'))

result.RE <- data.frame(Method=rep(estimators,2),tau2hat=c(meta.example.RE.theta.1.tau2,meta.example.RE.theta.2.tau2),tau2=c(rep(tau[[1]]ˆ2,length(estimators)),rep(tau[[2]]ˆ2,length(estimators))))

ggplot(data=result.RE, aes(x=Method, y=tau2hat, fill=as.factor(tau2))) +
geom_bar(stat="identity", position=position_dodge())+
ylim(0,1)
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Figure 13.5: Various estimators of τ2

We are ready to estimate the overall treatment effect using random effects.
estimators <- c("DL", "REML", "HE", "HS", "SJ", "ML", "EB")
meta.example.RE.theta.1.ES <- sapply(estimators,function(method){return(rma(yi = data.meta$theta.1,vi=data.meta$var.ES,method=method)$beta)})
meta.example.RE.theta.2.ES <- sapply(estimators,function(method){return(rma(yi = data.meta$theta.2,vi=data.meta$var.ES,method=method)$beta)})
#meta.example.RE.tau2.test <- unlist(lapply(meta.example.RE,'[[','tau2'))

result.RE$ES.RE <- c(meta.example.RE.theta.1.ES,meta.example.RE.theta.2.ES)

ggplot(data=result.RE, aes(x=Method, y=ES.RE, fill=as.factor(tau2))) +
geom_bar(stat="identity", position=position_dodge())

Add error bars here.
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Figure 13.6: Various estimators of the treatment effect with random effects

13.1.4.2.1 Presenting the results of a random effects meta-analysis
In order to illustrate the results of a random effects meta-analysis, you can first
show the forest plot. Let’s see how it works in our example:
forest(meta.example.RE.ES,slab = paste('Study',data.meta$id,sep=' '),xlab=expression(paste('Estimated Meta-analytic Parameter,',tauˆ2,0,sep=' ')))
forest(meta.example.RE.theta.1,slab = paste('Study',data.meta$id,sep=' '),xlab=expression(paste('Estimated Meta-analytic Parameter,',tauˆ2,'=','0.25',sep=' ')))
forest(meta.example.RE.theta.2,slab = paste('Study',data.meta$id,sep=' '),xlab=expression(paste('Estimated Meta-analytic Parameter,',tauˆ2,'=','1',sep=' ')))
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Figure 13.7: Forest plots with random effects

Another very nice and useful graphical presentation device is a radial (or Gal-
braith) plot. It relates the invserse of the standard errors to the effect sizes
normalized by their standard errors. Each data point is also related a radius
by the line passing through the origin. The Radial plot enables to visualize
the noise in the dataset, and is especially useful when comparing a fixed and a
random effects estimator for the same study.
meta.example.FE.theta.1 <- rma(yi = data.meta$theta.1,vi=data.meta$var.ES,method="FE")
radial(meta.example.FE.theta.1)
radial(meta.example.RE.theta.1)

Figure 13.8 shows how the mechanics of the fixed effects estimator differs from
the mechanics of the random effects one. In the presence of treatment effect
heterogeneity, the fixed effect estimator faces two issues:
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Figure 13.8: Radial plots with fixed and random effects τ2 = 0.25

1. It gives too much weight to very precise estimators. The random effects
estimator undoes part of this importance by adding τ2 to the weights of
each observation.

2. It overestimates overall precision by ignoring the sampling variance stem-
ming from treatment effect heterogeneity across sites. The random effects
estimator corrects for that by estimating τ2 and adding it to the estimate
of the total variance of the treatment effect.

Example 13.8. Let’s see how big a difference using random versus fixed effects
does to the estimation of treatment effects.

Let’s plot the two forest plots for the example with τ = 0.25.
forest(meta.example.FE.theta.1,slab = paste('Study',data.meta$id,sep=' '),xlab='Estimated Meta-analytic Parameter')
forest(meta.example.RE.theta.1,slab = paste('Study',data.meta$id,sep=' '),xlab='Estimated Meta-analytic Parameter')
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(b) Random effects

Figure 13.9: Fixed vs random effects with τ2 = 0.25

Figure 13.9 clearly shows that the inclusion of τ2 in the weights and precision
estimates makes a huge difference to the meta-analytic estimate. The fixed
effects estimator yields an estimate of our treatment effect of 0.3 ± 0.02. The
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random effects estimator yields an estimate of our treatment effect of 0.13 ± 0.24.
With τ2 = 1, the random effects estimator yields an estimate of our treatment
effect of 0.6 ± 0.39. Remember that the true effect size of our treatment is NA.
With τ2 = 1, the random effects estimator barely contains the truth in its 95 %
confidence interval.

13.1.5 Meta-regression
A Meta-regression tries to explain the heterogeneity in treatment effects across
studies using observed covariates. The idea is to identify characteristics of the
studies or of the sites that are correlated with how treatment effects vary.

13.1.5.1 The Meta-regression model

The main equation that we want to estimate is as follows (Raudenbusch, 2009):

θ̂k = Xkβ + εk + νk, (13.1)

Center regressors at the mean?

where Xk is a line vector containing the value of the variables suspected to be
correlated with treatment effect heterogeneity for study k and β is a column
vector of the corresponding coefficients, of the same dimension as Xk. Xk

contains a 1 as its first term, so that β0, the first component of the vector β
measures the effect of the treatment when all other regressors are set to zero. It
might thus be a good idea to set the regressors as deviations around their means
if we want β0 to capture the average effect of the treatment. The error term
εk captures the heterogeneity in estimated effect sizes that is due to sampling
noise. The error term νk captures the heterogeneity in effect sizes across sites
that remains after conditioning on Xk. In addition, it is generally assumed that
εk ∼ N(0, σ̂2

k) and νk ∼ N(0, τ2).

This model is in general called the mixed effects linear model. It contains at
the same time fixed effects captured by Xkβ and random effects captured by νk.
Setting τ2 to zero generates a fixed effects linear model. It is possible, as
usual, to test for whether τ2 is null or not, which is a test of whether the added
covariates fully capture the heterogeneity in treatment effects across studies.

13.1.5.2 Estimating the meta-regression model

There are at least four ways to estimate the meta-regression model:

1. Weighted Least squares (WLS): mostly used for fixed effects models, where
τ2 is assumed to be zero.

2. Full Maximum Likelihood Estimator (FMLE)
3. Restricted Maximum Likelihood Estimator (RMLE)
4. Method Of Moments (MOM)

https://www.jstor.org/stable/10.7758/9781610441384
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13.1.5.2.1 Weighted Least Squares The Weighted Least Squares (WLS)
estimator imposes that τ2 = 0. It is thus appropriate when we have a fixed
effects linear model. It is also used as a starting point for estimating the other
models.

The WLS estimator of β is written as follows:

β̂WLS =
(

N∑
k=1

1
σ̂2
k

X′kXk

)−1 N∑
k=1

1
σ̂2
k

X′kθ̂k.

The WLS estimator is similar to the standard OLS estimator, except that it
gives more weight to mmore precise estimates of the treatment effect. This is a
generalization of the weighted average that we have studied in Section 13.1.3.

13.1.5.2.2 Full Maximum Likelihood Estimator The Full Maximum
Likelihood Estimator (FMLE) is also a weighted estimator, but, as the random
effects estimator presented in Section 13.1.4.2, it uses as weigths not only the
precision estimates ( 1

σ̂2
k

), but the inverse of the sum of the variance due to
sampling noise and the variance due to variation in treatment effects across sites.
In order to make all of this clearer, let’s define ωk = εk + νk, and let’s denote
ζ2
k = σ̂2

k + τ2 the variance of ωk. The estimatingn equations for the FMLE
estimator are:

β̂FMLE =
(

N∑
k=1

1
ζ̂2
k

X′kXk

)−1 N∑
k=1

1
ζ̂2
k

X′kθ̂k,

τ̂2
FMLE =

∑N
k=1

1
ζ̂4
k

(
(θ̂k −Xkβ)2 − σ̂2

k

)
∑N
k=1

1
ζ̂4
k

where ζ̂2
k is an estimate of ζ2

k . In general, the FEML model is estimated by
using a first guess for β, for example β̂WLS . Using this first estimate, we can
compute a first estimate of τ̂2 and update the set of weights, and iterate until
convergence.

13.1.5.2.3 Restricted Maximum Likelihood Estimator The Restricted
Maximum Likelihood Estimator (RMLE) is a weigthed estimator that is very
similar to the FMLE estimator, except that the estimation procedure focuses
on estimating τ2 first. As a consequence, the formula for the τ2 estimator is
different:
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β̂RMLE =
(

N∑
k=1

1
ζ̂2
k

X′kXk

)−1 N∑
k=1

1
ζ̂2
k

X′kθ̂k,

τ̂2
RMLE =

∑N
k=1

1
ζ̂4
k

(
(θ̂k −Xkβ)2 − σ̂2

k

)
+ tr

[(∑N
k=1

1
ζ̂2
k

X′kXk

)−1∑N
k=1

1
ζ̂2
k

X′kXk

]
∑N
k=1

1
ζ̂4
k

.

Again, this estimator an be computed in a recursive way, starting with an initial
guesstimate for the parameters β, for example the simple WLS estimator.

13.1.5.2.4 Method Of Moments (MOM) The Methods Of Moments
estimator (MOM) does not require to assume that the distirbution of νk is
normal. MOM only assumes that the distribution of νk is i.i.d. with mean zero
and variance τ2. The MOM estimator is a three-step estimator:

1. Estimate β using a simple regression that does require knowing τ2.
2. Estimate τ2 from the residuals of this regression.
3. Run a Weighted Least Squares regression including the new estimate of τ2

in the weights.

When the first step uses a simple OLS estimator, we have:

β̂OLS =
(

N∑
k=1

X′kXk

)−1 N∑
k=1

X′kθ̂k

τ̂2
OLS =

RSS −
∑N
k=1 σ̂

2
k − tr(S)

k − p− 1 ,

where RSS is the Residual Sum of Squares of the OLS regression, p is the
number of covariates and:

S =
(

N∑
k=1

X′kXk

)−1 N∑
k=1

X′kXk.

When the first step uses the WLS estimator, we have:

τ̂2
WLS = WRSS − (k − p− 1)

tr(M) ,

where WRSS is the Residual Sum of Squares of the WLS regression and:
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tr(M) =
N∑
k=1

1
σ̂2
k

− tr

( N∑
k=1

1
σ̂2
k

X′kXk

)−1 N∑
k=1

1
σ̂4
k

X′kXk

 .

13.1.5.3 Estimating sampling noise in the meta-regression model

13.1.5.3.1 Under homoskedasticity Under homoskedasticity, we’re as-
suming that the variance of the treatment effect at various sites does not depend
on the site characteristics Xk. In that case, the variance of the estimated
coefficients is estimated by:

V̂arHomo(β̂) =
(

N∑
k=1

1
σ̂2
k + τ̂2 X′kXk

)−1

.

13.1.5.3.2 Under heteroskedasticity Under heteroskedasticity, we allow
the variance τ2 to depend on Xk. One correct estimator under that assumption
is the Huber-White sandwich estimator:

V̂arHW (β̂) =
(

N∑
k=1

1
σ̂2
k + τ̂2 X′kXk

)−1 N∑
k=1

(
1

σ̂2
k + τ̂2

)2
X′k(θ̂k −Xkβ̂)2Xk

(
N∑
k=1

1
σ̂2
k + τ̂2 X′kXk

)−1

.

Example 13.9. Let’s see how all of these estimators work in our example. In
order to run a regression, I first need a covariate. I’m going to use the exact
value of the noise that I’ve added to the regressions, so that I should be able
to perfectly capture the heterogeneity in treatment effects. Let’s see how this
works.
# Let me generate the noise as a deviation from the true treatment effect
data.meta$nu.1 <- data.meta$theta.1 - data.meta$ES
data.meta$nu.2 <- data.meta$theta.2 - data.meta$ES

# Let me now run a meta regression
metaReg.example.RE.theta.1.ES <- lapply(estimators,function(method){return(rma(theta.1 ~ nu.1,data=data.meta,vi=data.meta$var.ES,method=method))})
metaReg.example.RE.theta.2.ES <- lapply(estimators,function(method){return(rma(theta.2 ~ nu.2,data=data.meta,vi=data.meta$var.ES,method=method))})

#Let's see what the estimation looks like when we ran an REML regression:
summary(metaReg.example.RE.theta.1.ES[[2]])

##
## Mixed-Effects Model (k = 20; tau^2 estimator: REML)
##
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## logLik deviance AIC BIC AICc
## 11.9242 -23.8485 -17.8485 -15.1774 -16.1342
##
## tau^2 (estimated amount of residual heterogeneity): 0 (SE = 0.0005)
## tau (square root of estimated tau^2 value): 0
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability): 1.00
## R^2 (amount of heterogeneity accounted for): 100.00%
##
## Test for Residual Heterogeneity:
## QE(df = 18) = 12.6914, p-val = 0.8096
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1065.4316, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1954 0.0085 22.8649 <.0001 0.1786 0.2121 ***
## nu.1 0.9963 0.0305 32.6409 <.0001 0.9365 1.0561 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can see that the estimated coefficient for the noise is large and almost equal
to one, that the estimation of residual inter-site variance becomes zero and that
the precision of our estimared treatment effect becomes much greater (since all
variance due to site effects has been absorbed by the regressor).

Let’s now look at the estimated coefficients. For that, we are going to use the
function coef(summary()) that extracts a dataframe of the coefficients along
with their standard errors.
list.coef.tot.1 <- lapply(metaReg.example.RE.theta.1.ES,function(res){return(coef(summary(res)))})
list.coef.tot.2 <- lapply(metaReg.example.RE.theta.2.ES,function(res){return(coef(summary(res)))})

list.coef.1 <- unlist(lapply(list.coef.tot.1,'[[',c(1,1)))
list.se.1 <- unlist(lapply(list.coef.tot.1,'[[',c(2,1)))
list.coef.2 <- unlist(lapply(list.coef.tot.2,'[[',c(1,1)))
list.se.2 <- unlist(lapply(list.coef.tot.2,'[[',c(2,1)))

result.Meta <- data.frame(Method=rep(estimators,2),ES.Meta=c(list.coef.1,list.coef.2),se.ES=c(list.se.1,list.se.2),tau2=c(rep(tau[[1]]ˆ2,length(estimators)),rep(tau[[2]]ˆ2,length(estimators))))

ggplot(data=result.Meta, aes(x=Method, y=ES.Meta, group=as.factor(tau2), color=as.factor(tau2))) +
geom_point(stat="identity", position=position_dodge(0.7))+
geom_errorbar(aes(min=ES.Meta-qnorm((1+delta.2)/2)*se.ES,max=ES.Meta+qnorm((1+delta.2)/2)*se.ES),position=position_dodge(0.7),width=0.1)+
geom_hline(aes(yintercept=ES(param)), colour="#990000", linetype="dashed")+
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Figure 13.10: Various estimators of Effect Size in a Meta-Regression

Figure 13.10 shows that all estimators perform very well and deliver a precise
estimate of the true effect.

I think SJn is the MOM estimator, check that.

13.1.6 Constantly updated meta-analysis
Constantly updated meta-analysis performs the meta-analysis in a progressive
manner, as the results keep arriving. This is a very important tool that enables us
to aggregate constantly the information coming from different studies. Moreover,
restrospectively, it helps us to assess when we would have reached enough
precision so that we could have foregone an additional study. The way constantly
updated meta-analysis works is simply by performing a new meta-analysis each
time a new results pops up.

Example 13.10. Figure 13.11 shows how constantly updated meta-analysis
works in our example.
cum.wmae.1 <- function(k,theta,sigma2){
return(c(weighted.mean(theta[1:k],(1/sigma2[1:k])/(sum(1/sigma2[1:k]))),1/sum(1/sigma2[1:k])))

}

cum.wmae <- function(theta,sigma2){
return(sapply(1:length(theta),cum.wmae.1,theta=theta,sigma2=sigma2))

}

cum.test <- as.data.frame(t(cum.wmae(data.meta$ES,data.meta$se.ESˆ2)))
colnames(cum.test) <- c('cum.ES','cum.var')
cum.test$id <- 1:nrow(cum.test)
cum.test$cum.se.ES <- sqrt(cum.test$cum.var)
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ggplot(data.meta, aes(x=forcats::fct_rev(as.factor(id)), y=ES)) +
geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=ES-qnorm((delta.2+1)/2)*se.ES, ymax=ES+qnorm((delta.2+1)/2)*se.ES), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=ES(param)), colour="#990000", linetype="dashed")+
xlab("Studies")+
ylab("Initial effect size")+
theme_bw()+
coord_flip()

ggplot(cum.test, aes(x=forcats::fct_rev(as.factor(id)), y=cum.ES)) +
geom_bar(position=position_dodge(), stat="identity", colour='black') +
geom_errorbar(aes(ymin=cum.ES-qnorm((delta.2+1)/2)*cum.se.ES, ymax=cum.ES+qnorm((delta.2+1)/2)*cum.se.ES), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=ES(param)), colour="#990000", linetype="dashed")+
xlab("Studies")+
ylab("Cumulative effect size")+
theme_bw()+
coord_flip()
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(a) Initial data set
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(b) Constantly updated dataset

Figure 13.11: Constantly updated meta-analysis

Figure 13.11 shows that combining several imprecise estimates might help you
reach the same precision as running a larger experiment.
For instance, cumulating the first 10 studies with a small sample size (N =
100), the meta-analytic effect is estimated at 0.2 ± 0.18. This is very close to
the individual estimate obtained from the first estimate with a larger sample
size (sample 11 on Figure 13.11, with N = 1000): 0.17 ± 0.18. Both estimates
actually have the exact same precision (because they actually have the same
sample size). The same is true when combining the first 17 studies. The meta-
analytic effect is estimated at 0.24 ± 0.06, while the effect estimated using one
unique RCT with a larger sample size (sample 18 on Figure 13.11, with N =
104) is 0.21 ± 0.05. Finally, the same result occurs when combining the first 19
studies. The meta-analytic effect is estimated at 0.21 ± 0.03, while the effect
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estimated using one unique RCT with a larger sample size (sample 20 on Figure
13.11, with N = 105) is 0.19 ± 0.02.

As a conclusion, constantly updated meta-analysis would have each time delivered
the same result than the one found with a much larger study, rendering this
additional study almost irrelevant. This is a very important result: beyond
the apparent messiness of the first noisy estimates in Figures 13.1 and 13.3 lies
an order that can be retrieved and made apparent using constantly updated
meta-analysis. Sometimes, the answer is right there in front of our eyes, we just
lack the ability to see it. Constantly updated meta-analysis serves as a binocular
to magnify what is there. Think about how costly it woud be to run a very large
study, just to find out that the we did not really need it because we had known
the result all along.

Remark. Something pretty cool is that I can reproduce Figure 13.11 using the
metafor package with much less lines of code.
forest(meta.example.FE,slab = paste('Study',data.meta$id,sep=' '),xlab='Estimated Meta-analytic Parameter')
cumul.meta.example.FE <- cumul(meta.example.FE, order=data.meta$id)
forest(cumul.meta.example.FE,slab = paste('Study',data.meta$id,sep=' '),xlab='Estimated Meta-analytic Cumulated Parameter')

FE Model
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(b) Constantly updated dataset

Figure 13.12: Constantly updated meta-analysis with the ‘metafor‘ package

You can also call each of the individual results of the cumulative meta-analysis
using cumul.meta.example.FE$estimate. For example, the cumulated effect
size after the 10 first studies is equal to 0.2 ± 0.18.

13.2 Publication bias and site selection bias
Up to now, we have made the assumption that a meta-analysis can access the
results of ALL of the studies conducted on a topic. Problems appear when the
publisehd record does not contain ALL of the studies conducted on a topic, but
only a non-representative sample of them.

In the first section below, I detail the two main types of biases: publication bias
and site selection bias. In the second section, I present methods that help to
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detect and correct for publication bias. In the third section, I present methods
tha help to detect and correct for site selection bias. In the last section, I take a
step back and ask whether publication bias can be somehow optimal.

13.2.1 Sources of publication bias and of site selection bias
and Questionable Research Practices

This section explains the sources of publication bias and site selection bias. I
also expalin how they trigger the use of Questionable Research Practices that
bias the published record even more.

13.2.1.1 Publication bias

There is publication bias when the eventual publication of the results of a research
project depends on the results themselves. In general, the probability that a
result is published increases drastically when the results reach the usual levels of
statistical significance. On the contrary, the probability that a non significant
result is published decreases drastically.

Give evidence of that behavior.

The reasons for this behavior are pretty well understood: editors and referees
consider that only statistically significant results are of scientific interest, and
that non significant results bring close to no information on a topic, especially if
they are imprecise. Knowing this, most researchers choose not to invest time in
trying to send a paper with a non significant result for publication.

What are the consequences of publishing only statistically significant results?
Well, among imprecisely estimated effects, only the largest ones are going to
reach publication, generating a pattern of overestimation of the true treatment
effect. They key trade-off is whether the resulting bias is very large or not.

Example 13.11. What does publication bias look like in our example? Let’s
assume that only statistically significant effects are published. Would it change
our estimate? In order to see whether that is the case, let’s build Figure 13.1 with
the addition of fixed effects estimator using all results and using only statistically
significant results.
meta.example.FE.pubbias <- rma(yi = data.meta$ES[abs(data.meta$ES/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2)],vi=data.meta$var.ES[abs(data.meta$ES/sqrt(data.meta$var.ES))>qnorm((1+delta.2)/2)],method="FE")

meta.example.FE.small <- rma(yi = filter(data.meta,id<=10)$ES,vi=filter(data.meta,id<=10)$var.ES,method="FE")
meta.example.FE.small.pubbias <- rma(yi = filter(data.meta,id<=10)$ES[abs(data.meta$ES/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2)],vi=filter(data.meta,id<=10)$var.ES[abs(data.meta$ES/sqrt(data.meta$var.ES))>qnorm((1+delta.2)/2)],method="FE")

meta.example.FE.interm <- rma(yi = filter(data.meta,id<=17)$ES,vi=filter(data.meta,id<=17)$var.ES,method="FE")
meta.example.FE.interm.pubbias <- rma(yi = filter(data.meta,id<=17)$ES[abs(data.meta$ES/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2)],vi=filter(data.meta,id<=17)$var.ES[abs(data.meta$ES/sqrt(data.meta$var.ES))>qnorm((1+delta.2)/2)],method="FE")

ggplot(filter(data.meta,id<=10), aes(x=as.factor(id), y=ES)) +
geom_point(position=position_dodge(), stat="identity", colour='blue') +
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geom_errorbar(aes(ymin=ES-qnorm((delta.2+1)/2)*se.ES, ymax=ES+qnorm((delta.2+1)/2)*se.ES), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=ES(param)), colour="#990000", linetype="dashed")+
geom_hline(aes(yintercept=coef(meta.example.FE.small)), colour="#990000", linetype="dotted")+
geom_hline(aes(yintercept=coef(meta.example.FE.small.pubbias)), colour="green", linetype="dotted")+
xlab("Studies (only small sample size)")+
ylab("Effect size")+
theme_bw()

ggplot(filter(data.meta,id<=17), aes(x=as.factor(id), y=ES)) +
geom_point(position=position_dodge(), stat="identity", colour='blue') +
geom_errorbar(aes(ymin=ES-qnorm((delta.2+1)/2)*se.ES, ymax=ES+qnorm((delta.2+1)/2)*se.ES), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=ES(param)), colour="#990000", linetype="dashed")+
geom_hline(aes(yintercept=coef(meta.example.FE.interm)), colour="#990000", linetype="dotted")+
geom_hline(aes(yintercept=coef(meta.example.FE.interm.pubbias)), colour="green", linetype="dotted")+
xlab("Studies (only small and intermediate sample size)")+
ylab("Effect size")+
theme_bw()

ggplot(data.meta, aes(x=as.factor(id), y=ES)) +
geom_point(position=position_dodge(), stat="identity", colour='blue') +
geom_errorbar(aes(ymin=ES-qnorm((delta.2+1)/2)*se.ES, ymax=ES+qnorm((delta.2+1)/2)*se.ES), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=ES(param)), colour="#990000", linetype="dashed")+
geom_hline(aes(yintercept=coef(meta.example.FE)), colour="#990000", linetype="dotted")+
geom_hline(aes(yintercept=coef(meta.example.FE.pubbias)), colour="green", linetype="dotted")+
xlab("Studies (all)")+
ylab("Effect size")+
theme_bw()
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Figure 13.13: Illustration of publication bias

Figure 13.13 shows that publication bias can be a sizable problem. Remember
that the true effect that we are trying to estimate is NA. When only imprecise
studies with small sample size are available, the effect estimated using only
the statistically significant studies (actually, the only study that reports a
statistically significant result) is equal to 0.51 ± 0.5, while the effect estimated
all the 10 studies with a small sample size is 0.2 ± 0.18. When studies with small
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and intermediate sample size are available, the effect estimated using only the
statistically significant studies is equal to 0.29 ± 0.08, while the effect estimated
all the 17 studies with a small and intermediate sample size is 0.24 ± 0.06. It
is only when studies with large and very large sample size are added to the
estimation that publication bias is not a problem anymore. The effect estimated
using only the statistically significant studies is equal to 0.2 ± 0.02, while the
effect estimated all the studies is 0.19 ± 0.02.

As a conclusion of Figure 13.13, publication bias biases the true effect by:

• NA %, or NA of a standard deviation, with studies with a small sample
size,

• NA %, or NA of a standard deviation, with studies with a small or
intermediate sample size,

• NA %, or NA of a standard deviation, with all studies.

With random effects, this behavior becomes even more severe, since only the
sites at which the program has worked are going to appear in the published
record, thereby biasing downards the true heterogeneity in treatment effects.

Example 13.12. Here is how that impacts the truth in our example:
meta.example.RE <- rma(yi = data.meta$theta.1,vi=data.meta$var.ES,method="REML")
meta.example.RE.pubbias <- rma(yi = data.meta$theta.1[abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2)],vi=data.meta$var.ES[abs(data.meta$theta.1/sqrt(data.meta$var.ES))>qnorm((1+delta.2)/2)],method="REML")

meta.example.RE.small <- rma(yi = filter(data.meta,id<=10)$theta.1,vi=filter(data.meta,id<=10)$var.ES,method="REML")
meta.example.RE.small.pubbias <- rma(yi = filter(data.meta,id<=10)$theta.1[abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2)],vi=filter(data.meta,id<=10)$var.ES[abs(data.meta$theta.1/sqrt(data.meta$var.ES))>qnorm((1+delta.2)/2)],method="REML")

meta.example.RE.interm <- rma(yi = filter(data.meta,id<=17)$theta.1,vi=filter(data.meta,id<=17)$var.ES,method="REML")
meta.example.RE.interm.pubbias <- rma(yi = filter(data.meta,id<=17)$theta.1[abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2)],vi=filter(data.meta,id<=17)$var.ES[abs(data.meta$theta.1/sqrt(data.meta$var.ES))>qnorm((1+delta.2)/2)],method="REML")

ggplot(filter(data.meta,id<=10), aes(x=as.factor(id), y=theta.1)) +
geom_point(position=position_dodge(), stat="identity", colour='blue') +
geom_errorbar(aes(ymin=theta.1-qnorm((delta.2+1)/2)*se.ES, ymax=theta.1+qnorm((delta.2+1)/2)*se.ES), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=ES(param)), colour="#990000", linetype="dashed")+
geom_hline(aes(yintercept=coef(meta.example.RE.small)), colour="#990000", linetype="dotted")+
geom_hline(aes(yintercept=coef(meta.example.RE.small.pubbias)), colour="green", linetype="dotted")+
xlab("Studies (only small sample size)")+
ylab("Effect size")+
theme_bw()

ggplot(filter(data.meta,id<=17), aes(x=as.factor(id), y=theta.1)) +
geom_point(position=position_dodge(), stat="identity", colour='blue') +
geom_errorbar(aes(ymin=theta.1-qnorm((delta.2+1)/2)*se.ES, ymax=theta.1+qnorm((delta.2+1)/2)*se.ES), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=ES(param)), colour="#990000", linetype="dashed")+
geom_hline(aes(yintercept=coef(meta.example.RE.interm)), colour="#990000", linetype="dotted")+
geom_hline(aes(yintercept=coef(meta.example.RE.interm.pubbias)), colour="green", linetype="dotted")+
xlab("Studies (only small and intermediate sample size)")+
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ylab("Effect size")+
theme_bw()

ggplot(data.meta, aes(x=as.factor(id), y=theta.1)) +
geom_point(position=position_dodge(), stat="identity", colour='blue') +
geom_errorbar(aes(ymin=theta.1-qnorm((delta.2+1)/2)*se.ES, ymax=theta.1+qnorm((delta.2+1)/2)*se.ES), width=.2,position=position_dodge(.9),color='blue') +
geom_hline(aes(yintercept=ES(param)), colour="#990000", linetype="dashed")+
geom_hline(aes(yintercept=coef(meta.example.RE)), colour="#990000", linetype="dotted")+
geom_hline(aes(yintercept=coef(meta.example.RE.pubbias)), colour="green", linetype="dotted")+
xlab("Studies (all)")+
ylab("Effect size")+
theme_bw()
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Figure 13.14: Illustration of publication bias with Random Effects

Figure 13.14 shows that publication bias can be a sizable problem with random
effects as well. Remember that the true effect that we are trying to estimate is
NA. When only imprecise studies with small sample size are available, the effect
estimated using only the statistically significant studies is equal to 0.86 ± 0.5,
while the effect estimated all the 10 studies with a small sample size is 0.16 ±
0.24. When studies with small and intermediate sample size are available, the
effect estimated using only the statistically significant studies is equal to 0.22 ±
0.58, while the effect estimated all the 17 studies with a small and intermediate
sample size is 0.13 ± 0.28. It is only when studies with large and very large
sample size are added to the estimation that publication bias is not a problem
anymore. The effect estimated using only the statisticaly significant studies is
equal to 0.18 ± 0.41, while the effect estimated all the studies is 0.13 ± 0.24.

As a conclusion of Figure 13.13, publication bias biases the true effect by:

• NA %, or NA of a standard deviation, with studies with a small sample
size,

• NA %, or NA of a standard deviation, with studies with a small or
intermediate sample size,

• NA %, or NA of a standard deviation, with all studies.
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13.2.1.2 Site selection bias

There is site selection bias when researchers only implement an intervention
in sites where they expect it to work. How can they do so? There are several
informations that one can use to select sites for implementing a treatment and
maximizing its effectiveness. First, researchers might only be able to work with
highly motivated implementation agents. This might generate larger effects of
the treatment. Second, researchers might have an informal knowledge on the
types of individuals who react to the treatment well, and might decide to include
them preferentially in the experimental study. Third, researchers might try out
several different treatments in small informal pilots, and choose to run at scale
only the most effective one(s). Finally, researchers, by conducting an extensive
diagnosis of the problem that they face on the ground, might end up selecting a
treatment that is more appropriate than a randomly selected treatment.

What are the consequences of site selection bias? If the selection process remains
undocumented, a policy-maker trying to implement a treatment with a proven
track record might fail to obtain the expected results because the site on which
she decides to implement it is not representative of the distribution of sites in
which the program has been evaluated. Ommitting to detail the process of site
selection is akin to not explaining the recommendations of use, or worse the
diagnosis of the disease, for a drug. If we do not know which disease the drug is
effective against, we might end up expecting great results of a cold medecine
against cancer.

Simulations.

13.2.1.3 Questionable Research Practices

Publication bias triggers and is aggravated by the use of Questionable Research
Practices (QRPs). QRPs enable researchers (sometimes unknowingly) to obtain
more statistically significant results than should be the case in view of the true
effect of the treatment that they are looking at and the power of their test.
Normally, when a treatment has no effect, only 5% of the treatment effects are
going to turn out positive and significant when using a standard two-sided t-test.
But, with QRPs, this figure can increase to 10, 20 or even, 50% in some cases.

References.

What are the most usual QRPs?

• Choosing a sample that generates significant effects: that includes stopping
data collection when an effet of interest is found or deciding on critera
of inclusion of observations based on statistical singificance. Sometimes,
simply stopping to do robustness checks when results are significant is
enough to bias usual tests of statistical significance.

• Choosing an outcome because the effect of the treatment is statistically
significant. If we test a treatment on 100 outcomes for which the true
effect of the treatment is null, between 2 and 3 outcomes are expected to
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turn out with positive effects just by the sheer property of the tests that
we are using.

• Choosing an identification strategy that generates significant treatment
effects. Researcher smight try out various instruments and various natural
experiments before settling down on the one that yields a statistically
significant result.

• Choosing a subgroup for which significant effects are obtained. Analysis
by subgroups offers a lot of opportunities for finding spurious significant
effects.

The key question is whether these QRPs only move borderline significant results
into the realm of significance, and thus have small effects of the size of the
treatment effect, or if they enable to transform small effects into much larger
ones. Note though that even if the QRPs only transform barely non-significant
results in barely significant ones, the sheer repetition of these results in a
meta-analysis is going to overestimate precision and might yield eventually to
a confidence interval that does not contain the true effect, maybe by a large
margin.

Simulations.

13.2.2 Detection of and correction for publication bias
Over the years, researchers have become aware of the problem that publication
bias raises for meta-analyses and they have developed methods to detect and
correct for it.

13.2.2.1 Funnel plot asymmetry

The first tool to identify the extent of publication bias is the funnel plot. The
funnel plot plots the effect size as a function of its precision (or standard error).
In the absence of publication bias, results should be distributed symetrically
around the mean treatment effect estimate. We say that in this case the funnel
plot is symmetric. In the presence of publication bias, results that are not
statistically significant will be missing. They will be concentrated on the lower
left part of the plot, were standard errors are large and estimated effects small.
Missing results generate an asymetric funnel plot.

Example 13.13. Let’s see how the funnel plot works in our example.
funnel(meta.example.FE.interm,xlab='Effect size (without publication bias)',xlim=c(-0.5,1),ylim=c(0.382,0),refline=0)
abline(v=ES(param),col="red")
abline(v=coef(meta.example.FE.interm),col="blue")
funnel(meta.example.FE.interm.pubbias,xlab='Effect size (with publication bias)',xlim=c(-0.5,1),ylim=c(0.382,0),refline=0)
abline(v=ES(param),col="red")
abline(v=coef(meta.example.FE.interm.pubbias),col="green")

Figure 13.15 shows how a funnel plot works. The x-axis presents the effect size of
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Figure 13.15: Funnel plot with and without publication bias (homogeneous
treatment effects, small and intermediate precision)

each study (here, in the homogeneous treatment effect case, analyzed using fixed
effects). The y-axis presents the standard error, in an inverted scale, so that
the most precise studies appear at the top of the graph. The two diagonal lines
stemming out of zero present the 95% confidence intervals arounf zero, a.k.a.
the two sided tests of statistical significance. In the plot, we focus of studies
with small to intermediate precision. In our example, very precise studies are so
much more precise that they make the problem of publication bias vanish.

When there is no publication bias, the funnel plot does not seem to exhibit
asymmetry: there are as many imprecise studies on the left and on the right of
the average effect. When there is publication bias, all the studies that fall within
the confidence interval compatible with a zero treatment effect disappear. As a
consequence, the remaining treatment effects are inflated versions of the truth.
Moreover, we see that there is an increasing relationship between standard error
and effect size. This is a sign of funnel plot asymmetry.

For the sake of completeness, Figure 13.16 shows what the funnel plot looks like
with heterogeneous treatment effects analyzed using a random effects approach.
funnel(meta.example.RE.interm,xlab='Effect size (without publication bias)',xlim=c(-1,1),ylim=c(0.382,0),refline=0)
abline(v=ES(param),col="red")
abline(v=coef(meta.example.RE.interm),col="blue")
funnel(meta.example.RE.interm.pubbias,xlab='Effect size (with publication bias)',xlim=c(-1,1),ylim=c(0.382,0),refline=0)
abline(v=ES(param),col="red")
abline(v=coef(meta.example.RE.interm.pubbias),col="green")

How do we implement these intuitions rigorously? The next section present the
tools developed to do just that.

13.2.2.2 FAT-PET-PEESE

Docouliagos and Stanley (2012) have developed a method based on funnel plot

https://books.google.fr/books?hl=fr&lr=&id=jSQEdEsL7VoC&oi=fnd&pg=PP2&dq=doucouliagos+and+stanley+meta-regression+analysis+in+economics&ots=jTXmePff2F&sig=Dm5EOhOroc5K8EUYvqK4fvJrPs8#v=onepage&q=doucouliagos%20and%20stanley%20meta-regression%20analysis%20in%20economics&f=false
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Figure 13.16: Funnel plot with and without publication bias (heterogeneous
treatment effects, small and intermediate precision)

asymmetry to detect publication bias and correct for it. Their approach is based
on three steps:

1. The Funnel Asymmetry Test (FAT) that tests whether there is a relation-
ship between effect sizes and their precision.

2. The Precision-Effect Test (PET) that estimates the effect corrected for
publication bias and tests for its existence.

3. The Precision-Effect Estimate with Standard Error (PEESE) that estimates
the effect corrected for publication bias using a non-linear model for the
standard error. When there is a genuine effect, PEESE offers a less biased
estimate than PET.

The authors suggest to implement these procedures in a sequence, starting with
the existence of publication bias, evidence for the existence of a non-zero effect
once publication bias is accounted for and then estimate the bias-corrected effect
when it is detected to be non-zero. Let’s examine these approaches in turn.

The FAT and the PET are based on the following meta-regression:

θ̂k = α0 + α1σ̂k + εk + νk,

The PEESE is based on the following meta-regression:

θ̂k = β0 + β1σ̂
2
k + εk + νk,

Whether we assume that τ2, the variance of νk is zero or not makes the FAT
model a fixed or a random effects model. We run this regression with either
Weighted Least Squares (in the fixed effects model) or with one of the methods
appropriate for random effects (I’m going to use REML in what follows).
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The FAT tests the assumption that α1 = 0 using a standard two-sided t-test.
Rejecting the null means that there is sign of publication bias. The PET tests
whether α0 = 0. Rejecting the null means that there is evidence of a true effect.
The PEESE estimates the bias-corrected effect size by using β̂1.

Example 13.14. Let’s see in practice how FAT, PET and PEESE work in
our example. We are going first to run the regressions on the sample with
homogeneous treatment effects, and thus we are going to use the simple Weighted
Least Squares approach.

I’m focusing on the case with only small and intermediate precision estimates,
as in the funnel plots in Figure 13.15.
FAT.PET.FE.interm <- rma(ES ~ sqrt(var.ES), data= filter(data.meta,id<=17),vi=filter(data.meta,id<=17)$var.ES,method="FE")
FAT.PET.FE.interm.pubbias <- rma(ES ~ sqrt(var.ES), data = filter(data.meta,id<=17,abs(data.meta$ES/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2)),vi=filter(data.meta,id<=17,abs(data.meta$ES/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$var.ES,method="FE")

PEESE.FE.interm <- rma(ES ~ var.ES, data= filter(data.meta,id<=17),vi=filter(data.meta,id<=17)$var.ES,method="FE")
PEESE.FE.interm.pubbias <- rma(ES ~ var.ES, data = filter(data.meta,id<=17,abs(data.meta$ES/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2)),vi=filter(data.meta,id<=17,abs(data.meta$ES/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$var.ES,method="FE")

summary(FAT.PET.FE.interm)

##
## Fixed-Effects with Moderators Model (k = 17)
##
## logLik deviance AIC BIC AICc
## 8.6124 9.5293 -13.2247 -11.5583 -12.3676
##
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability): 0.64
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 15) = 9.5293, p-val = 0.8483
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.4952, p-val = 0.4816
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2791 0.0634 4.4053 <.0001 0.1549 0.4033 ***
## sqrt(var.ES) -0.3397 0.4828 -0.7037 0.4816 -1.2861 0.6066
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(FAT.PET.FE.interm.pubbias)
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##
## Fixed-Effects with Moderators Model (k = 6)
##
## logLik deviance AIC BIC AICc
## 6.4279 3.0645 -8.8557 -9.2722 -4.8557
##
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability): 0.77
## R^2 (amount of heterogeneity accounted for): 8.85%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 3.0645, p-val = 0.5471
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.1380, p-val = 0.2861
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1352 0.1470 0.9195 0.3578 -0.1530 0.4233
## sqrt(var.ES) 1.6351 1.5327 1.0668 0.2861 -1.3691 4.6392
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(PEESE.FE.interm)

##
## Fixed-Effects with Moderators Model (k = 17)
##
## logLik deviance AIC BIC AICc
## 8.6741 9.4058 -13.3483 -11.6818 -12.4911
##
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability): 0.63
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 15) = 9.4058, p-val = 0.8554
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6187, p-val = 0.4315
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
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## intrcpt 0.2568 0.0379 6.7699 <.0001 0.1825 0.3312 ***
## var.ES -0.9426 1.1983 -0.7866 0.4315 -3.2912 1.4061
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(PEESE.FE.interm.pubbias)

##
## Fixed-Effects with Moderators Model (k = 6)
##
## logLik deviance AIC BIC AICc
## 6.3347 3.2508 -8.6694 -9.0859 -4.6694
##
## I^2 (residual heterogeneity / unaccounted variability): 0.00%
## H^2 (unaccounted variability / sampling variability): 0.81
## R^2 (amount of heterogeneity accounted for): 3.31%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 3.2508, p-val = 0.5168
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.9516, p-val = 0.3293
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2460 0.0569 4.3210 <.0001 0.1344 0.3576 ***
## var.ES 4.3828 4.4928 0.9755 0.3293 -4.4229 13.1885
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results of the analysis are as expected, even though the small sample size
prevents us from drawing conclusive results. When running the regression on
the whole sample, in the absence of publication bias, we find that the estimated
coefficient for the standard error in the meta-analytic regression is -0.34 ±
0.95. As a consequence, the FAT detects no sign of publication bias, with a
pretty decent precision level. When running the regression on the sample with
publication bias, we find that the estimated coefficient for the standard error in
the meta-analytic regression is 1.64 ± 3. The coefficient is positive, as expected if
larger results occur with smaller sample size, but the precision of this coefficient is
too low for the FAT to be able to detect publication bias. This is a characteristic
of the FAT to have low power, especially in our case where only one observation
with small sample size drives all the results.

In the absence of publication bias, the PET detects a positive effect (0.28 ±
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0.12) that is significantly different from zero, which is a sign of existence of a
true effect. The PEESE is of 0.26 ± 0.07 . Following the practice suggested
by Docouliagos and Stanley, we should refrain from using these estimates and
focus only on the simple meta-analytic one (0.24 ± 0.06), since the FAT has not
detected signs of publication bias. In the presence of publication bias, the PET
does not detect a positive effect (0.14 ± 0.29). The PEESE is of 0.25 ± 0.11 .
Again, following the practice suggested by Docouliagos and Stanley, we should
refrain from using these estimates and focus only on the simple meta-analytic
one (0.29 ± 0.08), since the FAT has not detected signs of publication bias. Note
nevertheless that in both cases the PEESE is almost as good as the meta-analytic
estimate.

Let’s now look at what happens when we are in a random effects world.
FAT.PET.RE.interm <- rma(theta.1 ~ sqrt(var.ES), data= filter(data.meta,id<=17),vi=filter(data.meta,id<=17)$var.ES,method="REML")
FAT.PET.RE.interm.pubbias <- rma(theta.1 ~ sqrt(var.ES), data = filter(data.meta,id<=17,abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2)),vi=filter(data.meta,id<=17,abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$var.ES,method="REML")
FAT.PET.RE.interm.pubbias.pos <- rma(theta.1 ~ sqrt(var.ES), data = filter(data.meta,id<=17,abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2),data.meta$theta.1>0),vi=filter(data.meta,id<=17,abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2),data.meta$theta.1>0)$var.ES,method="REML")

PEESE.RE.interm <- rma(theta.1 ~ var.ES, data= filter(data.meta,id<=17),vi=filter(data.meta,id<=17)$var.ES,method="REML")
PEESE.RE.interm.pubbias <- rma(theta.1 ~ var.ES, data = filter(data.meta,id<=17,abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2)),vi=filter(data.meta,id<=17,abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$var.ES,method="REML")
PEESE.RE.interm.pubbias.pos <- rma(theta.1 ~ var.ES, data = filter(data.meta,id<=17,abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2),data.meta$theta.1>0),vi=filter(data.meta,id<=17,abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2),data.meta$theta.1>0)$var.ES,method="REML")

summary(FAT.PET.RE.interm)

##
## Mixed-Effects Model (k = 17; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -12.9481 25.8963 31.8963 34.0204 34.0781
##
## tau^2 (estimated amount of residual heterogeneity): 0.3020 (SE = 0.1283)
## tau (square root of estimated tau^2 value): 0.5496
## I^2 (residual heterogeneity / unaccounted variability): 94.49%
## H^2 (unaccounted variability / sampling variability): 18.14
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 15) = 447.9880, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0012, p-val = 0.9727
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1421 0.2999 0.4738 0.6356 -0.4457 0.7300
## sqrt(var.ES) -0.0450 1.3152 -0.0342 0.9727 -2.6227 2.5327
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##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(FAT.PET.RE.interm.pubbias)

##
## Mixed-Effects Model (k = 7; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -5.9836 11.9671 17.9671 16.7954 41.9671
##
## tau^2 (estimated amount of residual heterogeneity): 0.6336 (SE = 0.4058)
## tau (square root of estimated tau^2 value): 0.7960
## I^2 (residual heterogeneity / unaccounted variability): 98.75%
## H^2 (unaccounted variability / sampling variability): 80.28
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 5) = 427.8228, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.7196, p-val = 0.3963
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -0.2927 0.6739 -0.4343 0.6641 -1.6135 1.0281
## sqrt(var.ES) 4.5787 5.3976 0.8483 0.3963 -6.0005 15.1578
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(PEESE.RE.interm)

##
## Mixed-Effects Model (k = 17; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -12.9242 25.8485 31.8485 33.9726 34.0303
##
## tau^2 (estimated amount of residual heterogeneity): 0.3014 (SE = 0.1279)
## tau (square root of estimated tau^2 value): 0.5490
## I^2 (residual heterogeneity / unaccounted variability): 94.49%
## H^2 (unaccounted variability / sampling variability): 18.15
## R^2 (amount of heterogeneity accounted for): 0.00%
##
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## Test for Residual Heterogeneity:
## QE(df = 15) = 448.3132, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0208, p-val = 0.8852
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.1563 0.2156 0.7247 0.4686 -0.2663 0.5789
## var.ES -0.4451 3.0832 -0.1444 0.8852 -6.4881 5.5978
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(PEESE.RE.interm.pubbias)

##
## Mixed-Effects Model (k = 7; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -5.9949 11.9899 17.9899 16.8182 41.9899
##
## tau^2 (estimated amount of residual heterogeneity): 0.6366 (SE = 0.4077)
## tau (square root of estimated tau^2 value): 0.7979
## I^2 (residual heterogeneity / unaccounted variability): 98.76%
## H^2 (unaccounted variability / sampling variability): 80.92
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 5) = 430.0992, p-val < .0001
##
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.6936, p-val = 0.4049
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.0132 0.3914 0.0338 0.9730 -0.7539 0.7804
## var.ES 13.0892 15.7165 0.8328 0.4049 -17.7147 43.8930
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In the absence of publication bias, the FAT estimate of the coefficient for the
standard error in the meta-analytic regression is -0.04 ± 2.58. As a consequence,
the FAT detects no sign of publication bias. The PET does not detect a positive
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effect but its estimate is close to the truth, even if imprecise (0.28 ± 0.59). We
would interpret this as absence of evidence for an effect. The PEESE is of 0.16
± 0.42, close to the truth but highly imprecise. Following the practice suggested
by Docouliagos and Stanley, we should refrain from using these estimates and
should focus only on the simple meta-analytic one (0.13 ± 0.28), since the FAT
has not detected signs of publication bias.

In the presence of publication bias, the FAT estimate of the coefficient for the
standard error in the meta-analytic regression is 4.58 ± 10.58. The coefficient
is positive, as expected if larger results occur with smaller sample size, but the
precision of this coefficient is too low for the FAT to be able to detect publication
bias. The PET does not detect a positive effect, and even returns a negative
one (-0.29 ± 1.32), however extremely imprecise. The PEESE at least returns
a positive even though imprecise effect of 0.01 ± 0.77. Again, following the
practice suggested by Docouliagos and Stanley, we should refrain from using
these estimates and focus only on the simple meta-analytic one (0.22 ± 0.58),
since the FAT has not detected signs of publication bias. In both cases the
PEESE contains the true value in its confidence interval, but it does much less
well than in the fixed effects case.

Some simulations would be great here in order to assess whether the
estimated sampling noise of PEESE is actually of the same magnitude
as what would stem from Monte Carlos.

I’d like to end this section on FAT-PET-PEESE by giving a graphical intuition
of how this estimator corrects for publication bias. I’ll supplement the graphical
intuition with some intuition stemming from Heckman’s selection model. The key
intuition for understanding the FAT-PET and especially the PEESE estimator is
the fact that, in the presence of publication bias, the meta-regression is akin to a
censored or truncated model. As a consequence, and as Stanley and Docouliagos
explain, we have something like:

E[θ̂k||
θ̂k
σ̂k
| > 1.96] = α0 + α1σ̂kλ(θ̂k, σ̂k) + εk + νk,

Do the derivation.

with λ the Inverted Mills Ratio. Approximating the nonlinear function of σ̂k by
a second order polynomial whose minium is when σ̂k = 0 gives rise to PEESE.
FAT-PET approximate this function linearly instead. One way to see how this
operates is to add the FAT-PET and PEESE estimates to the funnel plots.

Example 13.15. Let’s see how the funnel plot works in our example.
plot(filter(data.meta,id<=17,abs(data.meta$ES/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$ES ~ sqrt(filter(data.meta,id<=17,abs(data.meta$ES/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$var.ES),xlim=c(0,0.382),ylim=c(-0.5,1),xlab='Standard error', ylab ='Effect size', main='Homogeneous effects')
abline(h=ES(param),col="red")
abline(h=coef(meta.example.FE.interm.pubbias),col="green")
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curve((coef(FAT.PET.FE.interm.pubbias)[1]+coef(FAT.PET.FE.interm.pubbias)[2]*x),col="blue", add = TRUE)
curve(expr=coef(PEESE.FE.interm.pubbias)[1]+coef(PEESE.FE.interm.pubbias)[2]*xˆ2,col="blue",lty=2,add = TRUE)
legend("bottomright",

legend = c("Truth", "Meta","FAT-PET","PEESE"),
col = c('red', 'green','blue','blue'),
lty= c(1,1,1,2),
bg = "white")

plot(filter(data.meta,id<=17,abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$theta.1 ~ sqrt(filter(data.meta,id<=17,abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$var.ES),xlim=c(0,0.382),ylim=c(-1,1),xlab='Standard error', ylab ='Effect size', main='Heterogeneous effects')
abline(h=ES(param),col="red")
abline(h=coef(meta.example.RE.interm.pubbias),col="green")
curve((coef(FAT.PET.RE.interm.pubbias)[1]+coef(FAT.PET.RE.interm.pubbias)[2]*x),col="blue", add = TRUE)
curve((coef(FAT.PET.RE.interm.pubbias.pos)[1]+coef(FAT.PET.RE.interm.pubbias.pos)[2]*x),col="blue",lty=4, add = TRUE)
curve(expr=coef(PEESE.RE.interm.pubbias)[1]+coef(PEESE.RE.interm.pubbias)[2]*xˆ2,col="blue",lty=2,add = TRUE)
curve(expr=coef(PEESE.RE.interm.pubbias.pos)[1]+coef(PEESE.RE.interm.pubbias.pos)[2]*xˆ2,col="blue",lty=3,add = TRUE)
legend("bottomright",

legend = c("Truth", "Meta","FAT-PET","FAT-PET+","PEESE","PEESE+"),
col = c('red', 'green','blue','blue','blue','blue'),
lty= c(1,1,1,4,2,3),
bg = "white")
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Figure 13.17: Funnel plot with PET and PEESE

On Figure 13.17, we see how PET and PEESE operate to deliver an estimate
corrected for publication bias: they fit a line (PET) or a curve (PEESE) and use
the intercept of this line or curve as an estimate of the true treatment effect. The
plot for the hetergeneous treatment effects case suggests that both FAT-PET
and PEESE are biased by a statistically significant negative result. I think there
is a good case to be made for focusing only on results of the same sign when
using these tools. When we get rid of that observation from the sample, the FAT
estimate of the coefficient for the standard error in the meta-analytic regression
is 1.37 ± 4.25. The PET estimate is now 0.48 ± 0.51. The PEESE estimates an
effect of 0.57 ± 0.28. This correction does not seem to improve the estimator
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much in our example.

Nevertheless, it is worth to investigate further how PEESE behaves when ob-
servations from the over side of zero enter the picture. They seem to introduce
a lot of noise. I’d advocate for always using only values from one side, but we
need theory and simulations to prove that intuition.

13.2.2.3 P-curving

P-curving has been proposed by Uri Simonsohn, Leif Nelson and Joseph Simmons
in order to measure the evidential value of a set of published results. The basic
idea is rather simple: when there is a true effect, the distribution of p-values
of statistically significant results should be denser at lower p-values. This is
because when there is a true effect, the density of the distribution of the p-values
of statistically significant results decreases with the p-values. When there is no
effect and in the absence of QRPs, p-values of statistically significant results are
uniformly distributed, and their density is thus flat. When there is no effect and
there are QRPs, the density of the distribution of the p-values of statistically
significant results increases with the p-values. P-curving interprets the shape of
teh p-curve as showing signs of true effect (we say it has evidential value), no
effect, or QRPs. P-curving has two applications: detection of publication bias
and QRPs and correction for publication bias and QRPs.

13.2.2.3.1 Proof of evidential value using p-curving The basic idea
behind using p-curving for measuring whether a result has evidential value rests
on the fact that, when there is no effects and no QPRs, p-values of statistically
significant results are distributed uniformly. This is because, in the absence of
any effect and of QRPs, the p-value measures the probability that a result of
the same size or higher happens. When the effect is non existent and there are
no QRPs, a p-value of 0.05 will occur 5% of the time and a p-value of 0.04 will
occur 4% of the time So, p-values between 0.05 and 0.04 will occur 1% of the
time, as p-values between 0.04 and 0.03 and so on. When there is a true effect,
more small p-values are observed than larger ones. When there is no effet and
there are QRPs, more p-values are observed closer to 0.05 than further away.

How to go from this intuition to testing for the existence of evidential value?
One first very simple approach would simply be to separate the set of statistically
significant p-values [0, 0.05] in half. In the absence of effect and of QRPs, the
probability that a statistically significant p-value falls into one of these two sets
([0, 0.025] and ]0.025, 0.05]) is 0.5. Comparing the actual proportion of p-values
falling in these sets to the theoretical uniform value gives a first simple test of
evidential value.

A rigorous test can be built by computing the probability that an event such as
observed would have happened under the null of no effect and no QRPs. This can
be done using the Binomial law, since under the null of no effect and no QRPs, X,
the number of results falling in the ]0.025, 0.05] set, follows a binomial Bi(n, p),

http://www.p-curve.com
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with n the number of studies and p = 0.5. The probability of observing x studies
among n in the ]0.025, 0.05] set is thus Pr(X = x) = b(x, n, p), where b(x, n, p) is
the density of the binomial distribution. The probability of observing x studies
or more among n in the ]0.025, 0.05] set is Pr(X ≥ x) = 1−B(x− 1, n, p), where
B(x, n, p) is the cumulative of the binomial distribution.

For example, if we have 6 studies, with five of them falling in the ]0.025, 0.05]
set, we have 5/6 = 83 % of studies close to 0.05. Under the null of no effect
and no QRPs, this would have happened with probability 0.09. If we define
the alternative to be the existence of QRPs, this or something worse (meaning
more QRPs) would have happened with probability 0.11. This is not definitive
evidence against the null and in favor of QRPs, but we’re getting there. If we
define the alternative as being a true effect, we would obtain the same results
per symmetry of the binomail distribution. Let’s write a function that takes a
vector of p-values and returns the binomial test statistic and p-value for the null
of no effect and no QRPs.
pcurve.binom <- function(pvalues,alter='True'){

p.upper <- ifelse(pvalues>0.025,1,0)
p.lower <- ifelse(pvalues<=0.025,1,0)
pbinom.True <- pbinom(sum(p.lower),length(pvalues),0.5)
if (alter=='QRP'){
pbinom.True <- 1-pbinom(sum(p.upper)-1,length(pvalues),0.5)

}
return(pbinom.True)

}

Another test use the distribution of the p-values of the p-values, or pp-value.
The test works as follows. Let’s say you have a set of p-values pi. For each pi,
compute the probability to observe this p-value or a more extreme one if the null
were true. This is not too hard since pi is distributed uniformly on [0, 0.05] under
the null and thus both its density and cumulative are known. The only twist you
have to pay attention to is how you define extreme. This depends on what is
your alternative hypothesis. If you are comparing the null to a case with QRPs,
then more extreme means a p-value closer to 0.05. If you are comparing the null
to a case where there is a true effect, then more extreme means a p-value closer
to 0. In the latter case, the pp-value of pi = pk is pprk = Pr(pi ≤ p) = pk/0.05,
from the cumulative of a uniform. In the former case, the pp-value of pi = pk is
pplk = Pr(pi ≥ p) = 1 − pk/0.05. Now, you can aggregate the pp-values using
Fisher’s method: F spp = −2

∑
k ln(ppsk), for s ∈ {l, r}. F spp is distributed χ2(2k)

under the null.
pp.test <- function(pvalues,alter='True'){

pp <- pvalues/0.05
if (alter=='QRP'){
pp <- 1-pp

}
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Fpp <- -2*sum(log(pp))
dfChis <- 2*length(pvalues)
pChisquare.Fpp <- pchisq(Fpp,dfChis,lower.tail=F)
qChisquare.5 <- qchisq(0.05,dfChis,lower.tail=F)
return(c(pChisquare.Fpp,Fpp,dfChis,qChisquare.5))

}

Imagine for example that we have three studies with p-values 0.001, 0.002 and
0.04. Let’s compute the test against both alternatives:
pvalex <- c(0.001,0.002,0.04)
p.binom.test.True <- pcurve.binom(pvalex,alter='True')
p.binom.test.QRP <- pcurve.binom(pvalex,alter='QRP')

pp.ex.QRP <- pp.test(pvalex,alter='QRP')
pp.ex.True <- pp.test(pvalex,alter='True')

The Chi-square statistic against QRPs is 3.34 and the corresponding p-value is
0.76. The Chi-square statistic against a true effect is 14.71 and the corresponding
p-value is 0.02.

There is a last test based on the p-curve tool that compares the actual distribution
of statistically significant p-values to that that would be generated by a real but
small effect, one that we would be powered to detect in only 33% of the samples.
The test simply reverses the null and alternative of the previous test when the
alternative was that there exists a true effect. I do not really see what one has
to gain from this additional test so I’m going to abstain from encoding for now.
It uses non-central distributions to compute the pp-values.

Code the additional pp-value test.

Example 13.16. Let’s see how these tests work in our example.

We first have to compute the p-values for each statistically significant effect.
Then, we can implement our tests.
data.meta$p.FE <- 2*pnorm(abs(data.meta$ES/sqrt(data.meta$var.ES)),lower.tail=F)
data.meta$p.RE <- 2*pnorm(abs(data.meta$theta.1/sqrt(data.meta$var.ES)),lower.tail=F)

pvalex.FE <- filter(data.meta,id<=17,abs(data.meta$ES/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$p.FE
pvalex.RE <- filter(data.meta,id<=17,abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$p.RE

p.binom.test.True.FE <- pcurve.binom(pvalex.FE,alter='True')
p.binom.test.QRP.FE <- pcurve.binom(pvalex.FE,alter='QRP')
pp.ex.QRP.FE <- pp.test(pvalex.FE,alter='QRP')
pp.ex.True.FE <- pp.test(pvalex.FE,alter='True')

p.binom.test.True.RE <- pcurve.binom(pvalex.RE,alter='True')
p.binom.test.QRP.RE <- pcurve.binom(pvalex.RE,alter='QRP')
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pp.ex.QRP.RE <- pp.test(pvalex.RE,alter='QRP')
pp.ex.True.RE <- pp.test(pvalex.RE,alter='True')

In the homogeneous effects case, the p-value of the null of an absence of an effect
versus QRPs is of 0.76. The p-value of a null of an absence of an effect versus
a true effect is 0. In the heterogeneous effects case, the p-value of a null of an
absence of an effect versus QRPs is of 1 while the test statistic of a null of an
absence of an effect versus a true effect is 0. In both case, we clearly reject the
absence of an effect. As a consequence, the set of p-values has evidential value.
We also reject the existence of QRPs. That means that there is no p-hacking
creating an undue mass of p-values close to 0.05, but that does not mean that
there is no publicaiton bias. P-curving has nothing to say about publication
bias. It can only say whether there is a true effect or not and whether there are
signs of QRPs.

A cool way to present the results of p-curving is to draw the density of the
statistically significant p-values against a uniform and the density that would
occur under 33% power. Let me try and build such a graph in our example.
First, we have to split the overall set [0, 0.05] into equal-sized p-values bins, lets
say [0, 0.01[, [0.01, 0.02[, [0.02, 0.03[, [0.03, 0.04[, [0.04, 0.05]. I’m gonna name
each interval after its higher end point. Second, we have to compute how many
of our observations fall in each of the bins. Third, just plot the corresponding
density.

The addition of the density of p-values if the real test had 33% power is slightly
more involved, because it requires the notions of power and MDE that we studied
in Chapter 7. As in Chapter 7, we’re going to use the CLT approximation to
the distribution of the treatment effect estimate over sampling replications.
The key idea is to recognize that, with a power of κ for a two-sided test, the
distribution of the treatment effect divided by its standard error

√
V [Ê] is a

standard normal centered at MDEnκ,α = MDEκ,α√
V [Ê]

= Φ−1(κ) + Φ−1(1 − α/2).
This is an approximation that assumes away the mass of the distribution that lies
below zero. This appromixation is useful since it delivers closed form solutions
and it most of the time is accurate enough. The lower below κ = 33% we’re
going, the likelier it is that this approximation is at fault. Now, the probability
that this distribution gives a p-value of 0.05 or smaller for a two-sided test of the
true effect being zero with size 5% is equal to Φ(MDEnκ,α − Φ−1(1− α/2)) = κ
by definition. The probability that it gives a p-value of p for the same test is
of Φ(MDEnκ,α − Φ−1(1 − p/2)). Conditionnal on having a p-value inferior to
5% (i.e. a statistically significant result), the probability of having a p-value
between p1 and p2 (i.e. the pp-value) is thus:

ppκ,α(p1, p2) = 1
κ

(
Φ(MDEnκ,α − Φ−1(1− p2/2))− Φ(MDEnκ,α − Φ−1(1− p1/2))

)
.
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Let’s write a function that gives us this result.
MDE.var <- function(alpha=0.05,kappa=0.33,varE=1){

return((qnorm(kappa)+qnorm(1-alpha/2))*sqrt(varE))
}

ppCurvePower <- function(p1,p2,alpha=0.05,kappa=0.33,varE=1){
return((pnorm(MDE.var(alpha=alpha,kappa=kappa)-qnorm(1-p2/2))

-pnorm(MDE.var(alpha=alpha,kappa=kappa)-qnorm(1-p1/2)))/kappa)
}

Now, let’s plot the p-curve plot.
pCurve.hist <- function(pvalues,power=.33){
dens1 <- sum(ifelse(abs(pvalues-0.005)<0.005,1,0)/length(pvalues))
dens2 <- sum(ifelse(abs(pvalues-0.015)<0.005,1,0)/length(pvalues))
dens3 <- sum(ifelse(abs(pvalues-0.025)<0.005,1,0)/length(pvalues))
dens4 <- sum(ifelse(abs(pvalues-0.035)<0.005,1,0)/length(pvalues))
dens5 <- sum(ifelse(abs(pvalues-0.045)<0.005,1,0)/length(pvalues))
dens <- c(dens1,dens2,dens3,dens4,dens5)
p.hist.1 <- cbind(c(0.01,0.02,0.03,0.04,0.05),dens)
p.hist.1 <- as.data.frame(p.hist.1)
colnames(p.hist.1) <- c('p','density')
p.hist.1$Data <- c("Observed")
p.hist.2 <- cbind(c(0.01,0.02,0.03,0.04,0.05),0.2)
p.hist.2 <- as.data.frame(p.hist.2)
colnames(p.hist.2) <- c('p','density')
p.hist.2$Data <- c("Uniform")
dens331 <- ppCurvePower(0,0.01)
dens332 <- ppCurvePower(0.01,0.02)
dens333 <- ppCurvePower(0.02,0.03)
dens334 <- ppCurvePower(0.03,0.04)
dens335 <- ppCurvePower(0.04,0.05)
dens33 <- c(dens331,dens332,dens333,dens334,dens335)
p.hist.3 <- cbind(c(0.01,0.02,0.03,0.04,0.05),dens33)
p.hist.3 <- as.data.frame(p.hist.3)
colnames(p.hist.3) <- c('p','density')
p.hist.3$Data <- c("Power33")
p.hist <- rbind(p.hist.1,p.hist.2,p.hist.3)
return(p.hist)

}

p.hist.FE <- pCurve.hist(pvalex.FE)
p.hist.FE$Effect <- "Homogeneous"
p.hist.RE <- pCurve.hist(pvalex.RE)
p.hist.RE$Effect <- "Heterogeneous"
p.hist.ex <- rbind(p.hist.FE,p.hist.RE)
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p.hist.ex$Effect <- factor(p.hist.ex$Effect,levels=c("Homogeneous","Heterogeneous"))
p.hist.ex$Data <- factor(p.hist.ex$Data,levels=c("Observed","Uniform","Power33"))

ggplot(data=p.hist.ex, aes(x=p, y=density, color=Data)) +
geom_point() +
geom_line() +
facet_grid(. ~ Effect)+
theme_bw()
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Figure 13.18: P-curve plot in our example

13.2.2.3.2 Correction for publication bias using p-curving In a sep-
arate paper, Simonsohn, Nelson and Simmons proposed a way to use p-curve
to correct treatment effect estimates from publication bias. The underlying
idea is rather simple, but also brilliant: the shape of the p-curve changes with
the true underlying effect. It goes from uniform in the absence of any effect to
right-skewed when there is an effect. The strength of the right-skewness tells us
something about the underlying strength of the measured effect. For a given
sample size, an increase in right-skewness will mean an increasae in effect size.
The key difficulty is to separate the impact of sample size from that of effect
size on the shape of the p-curve. Since sample size is known, it should be doable.
Let’s see how.

The key technical intuition behind the p-curve approach to correction for pub-
lication bias is to notice that the pp-curve computed for the true treatment
effect should be uniform on [0, 1]. We have seen in the previous section that
the pp-curve (the proportion of p-values that fall within identical intervals) is
uniform when the true effect is zero. If we compute the pp-curve with a different
assumption and apply it to the actual p-values that we observe, it is going to be
uniform only for the actual treatment effect. So the only thing to do is to take
all of the significant p-values and to compute their pp-curve for various levels of
treatment effect, or, better, to look for the treatment effect that minimizes the
distance between the observed pp-curve and a uniform. The authors propose to

https://poseidon01.ssrn.com/delivery.php?ID=968120070017096022067095015077090081127015066012065038099103064095066125118101087000019101125033110002058114102117068031082117013010054030001011069073086069105087004037003126007029115080118115116004080116094099076097092111007065003101127024028025084&EXT=pdf
https://poseidon01.ssrn.com/delivery.php?ID=968120070017096022067095015077090081127015066012065038099103064095066125118101087000019101125033110002058114102117068031082117013010054030001011069073086069105087004037003126007029115080118115116004080116094099076097092111007065003101127024028025084&EXT=pdf
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minimize a Kolmogorov-Smirnov metric to do so.

Let’s first explore the way the concept works. For each treatment effect θ̂k
and its estimated standard error σ̂k we know from the CLT that they are
distributed approximately as a normal. If we assume that the true treatment
effect is θc, with c for candidate value, we know that θ̂k−θc

σ̂k
is distributed as a

centered standardized normal distribution, under the assumption of homogeneous
treatment effect across studies. Homogeneity is a crucial assumption for the
pp-curve approach to correction for publication bias. I’ll try to see how we can
relax it later, but for now, I’m going to assume τ2 = 0. One way to compute
the pp-value is to start directly with the treatment effect and its standard error,
and to recover the pp-value from there. The pp-value is the probability that we
have a draw of an estimator θ̂ of mean θc and standard error σ̂k that is greater
or equal to θ̂k given that it is a statistically significant result:

pp(θ̂k, σ̂k, θc) = Pr
(
θ̂ ≥ θ̂k

∣∣∣∣∣
∣∣∣∣∣ θ̂σ̂k

∣∣∣∣∣ ≥ Φ−1
(

1− α

2

))
.

Let’s assume that we are only looking at statistically significant results for
two-sided t-tests, but that are located on the positive side of the threshold: θ̂k

σ̂k
≥

Φ−1 (1− α
2
)
. This assumption will be innocuous in most cases of homogeneous

treatment effect when the true effect we examine is positive since the mass of the
distribution will fall on the positive side of the threshold, especially for significant
results.

How do we compute the pp-value for a candidate value θc?

Theorem 13.3 (pp-value with homogeneous positive treatment effect). Under
the assumption that the treatment effect is homogeneous across studies and equal
to θc, that the estimated effects θ̂k are approximately normally distributed with
mean θc and standard error σ̂k and that we use only effects that are positive and
significant at the level α following a two-sided test, the pp-value of a result with
estimated effect θ̂k and estimated standard error is σ̂k:

pp(θ̂k, σ̂k, θc) =
Φ
(
θc−θ̂k
σ̂k

)
Φ
(
θc
σ̂k
− Φ−1

(
1− α

2
)) .
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Proof.

pp(θ̂k, σ̂k, θc) = Pr
(
θ̂ ≥ θ̂k

∣∣∣∣∣ θ̂σ̂k ≥ Φ−1
(

1− α

2

))

=
Pr
(
θ̂ ≥ θ̂k ∧ θ̂ ≥ Φ−1 (1− α

2
)
σ̂k

)
Pr
(
θ̂ ≥ Φ−1

(
1− α

2
)
σ̂k

)
=

Pr
(
θ̂ ≥ θ̂k

)
Pr
(
θ̂ ≥ Φ−1

(
1− α

2
)
σ̂k

)
≈

1− Φ
(
θ̂k−θc
σ̂k

)
1− Φ

(
Φ−1(1−α2 )σ̂k−θc

σ̂k

)

≈
Φ
(
θc−θ̂k
σ̂k

)
Φ
(
θc
σ̂k
− Φ−1

(
1− α

2
)) .

The second equality stems from Bayes theorem. The third equality stems
from the fact that θ̂ ≥ θ̂k ⇒ θ̂ ≥ Φ−1 (1− α

2
)
σ̂k since θ̂k ≥ Φ−1 (1− α

2
)
σ̂k by

assumption. The fourth equality stems from using the normality approximation to
the distribution of θ̂. The fifth equality uses the usual property of the cumulative
of the standardized and centered normal distribution that 1−Φ(x) = Φ(−x).

Another way to compute the pp-value is to start from the p-value. This approach
is especially useful when we do not have access to an estimate of the treatment
effect, but only to the p-value of a two-sided t-test and to the sample size. In this
case, we can generally only recover the effect size of the treatment effect dc, that
is the treatment effect scaled by the standard error of the outcome σY (under
the assumption of homogeneous treatment effects, there is no heteroskedasticity,
and the variance of outcomes is identical in both the treatment and control
groups). In order to do so, we use the fact that dc = θc√

Nσ̂k
since σ̂k ≈ σY√

N
for

the With/Without estimator without control variables (using the CLT). Note
that this is a highly restrictive assumption, excluding that the With/Without
estimator controls for covariates, or the use of other estimators.

Corollary 13.1 (Building pp-value from p-values). Under the assumption that
the effect size is homogeneous across studies and equal to dc, that the estimated
effects sizes d̂k are approximately normally distributed with mean dc, that we use
only effects are positive and significant at the level α following a two-sided test,
and that σ̂k ≈ σY√

N
, the pp-value of a result with sample size Nk and p-value p̂k

is:
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ppp(p̂k, Nk, dc) ≈
Φ
(√

Ndc − Φ−1 (1− pk
2
))

Φ
(√

Ndc − Φ−1
(
1− α

2
)) .

Proof. From the formula for two-sided t-tests, we have that:

pk = 2
(

1− Φ
(∣∣∣∣∣ θ̂kσ̂k

∣∣∣∣∣
))

.

As a consequence:

∣∣∣∣∣ θ̂kσ̂k
∣∣∣∣∣ = Φ−1

(
1− pk

2

)
.

Using the assumption that all significant effects are positive, and the fact that√
Ndc ≈ θc

σ̂k
under the assumption that σ̂k ≈ σY√

N
, we obtain the result by using

Theorem 13.3.

Remark. Using only positive values is a benefit, since the preferred direction is
less likely to have been slectively underreported.

Remark. The authors use Student t distributions instead of a normal approxima-
tion. This will not matter as loong as sample size is large enough. Generalizing
the results of this section to Student-t distributions is simple, but the normal
approximation should work most of the time.

Remark. There seems to be a mistake in the numerator in the original paper:
the authors subtract power whereas it does not seem to be required. At least,
I do not understand their derivation. Both appraoches yield similar results in
their example, except for one case.

Remark. The assumption of homogeneous treatment effects is key here: it enables
to use the standard normal as an approximation. The test has to be modified to
account for heterogeneous treatment effects. Heterogeneity in treatment effects
might bias the estimate.

In order to estimate the parameter θc (or dc if using p-values only), the authors
make use of the fact that, under the true θc, the pp-values are uniformly
distributed on [0, 1]. The authors propose to choose the value θ̂c that makes the
pp-curve as close to a uniform as possible as an estimator of θc. As a metric for
estimating the distance between the observed pp-curve and the uniform [0, 1], the
authors propose to use the Kolmogorov-Smirnov statistic: the maximum value of

https://en.wikipedia.org/wiki/Kolmogorov\T1\textendash Smirnov_test
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the absolute difference between the empirical cdf of pp-values and the theoretical
values of the cdf of the uniform [0, 1]. The objective function proposed by the
authors minimizes this distance.

Let’s write the functions to compute just that:
ppCurveEst <- function(thetac,thetak,sigmak,alpha=0.05){
return((pnorm((thetac-thetak)/sigmak)/pnorm(thetac/sigmak-qnorm(1-alpha/2))))

}
#KS statistic
KS.stat.unif <- function(vector){
return(ks.test(x=vector,y=punif)$statistic)

}
ppCurve.Loss.KS <- function(thetac,thetak,sigmak,alpha=0.05){

ppvalues <- ppCurveEst(thetac=thetac,thetak=thetak,sigmak=sigmak,alpha=alpha)
return(KS.stat.unif(ppvalues))

}
#Estimating thetac that minimizes the KS distance by brute grid search first
# will program the optimize function after
ppCurveEstES <- function(thetak,sigmak,thetacl,thetach,alpha=0.05,ngrid=100){

# break thetac values in a grid
thetac.grid <- seq(from=thetacl,to=thetach,length.out=ngrid)
# computes the ppcurve for each point of the grid: outputs a matrix where columns are the ppcurves at each values of thetac
ppCurve.grid <- sapply(thetac.grid,ppCurveEst,thetak=thetak,sigmak=sigmak,alpha=alpha)
# compute KS stat for each value of thetac (over columns)
KS.grid <- apply(ppCurve.grid,2,KS.stat.unif)
# computes the value of thetac for which the KS stat is minimum (match identifies the rank of the min in the KSgrid)
min.theta.c <- thetac.grid[match(min(KS.grid),KS.grid)]
# optimizes over KS stat to find value of thetac that minimizes the KS stat
thetahat <- optimize(ppCurve.Loss.KS,c(min.theta.c-0.1,min.theta.c+0.1),thetak=thetak,sigmak=sigmak,alpha=alpha)
# returns the optimal thetac, the grid of thetac, the KS stats on the grid, for potential plot, and the ecdf of ppvalues at the optimum theta for graph against the uniform
return(list(thetahat$minimum,thetac.grid,KS.grid,ecdf(ppCurve.grid[,match(min(KS.grid),KS.grid)])))

}

Example 13.17. Let’s see how this approach works in our example.

Let’s start with the homogeneous treatment effect case
# I'm keeping only significant and positive estimates
# Maybe this could be enforced within the function for ease of reading and use
ppCurveBiasCorrFE <- ppCurveEstES(thetak=filter(data.meta,id<=17,data.meta$ES>0,abs(data.meta$ES/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$ES,sigmak=sqrt(filter(data.meta,id<=17,abs(data.meta$ES/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$var.ES),thetacl=0,thetach=10,alpha=0.05,ngrid=100)
plot(ppCurveBiasCorrFE[[2]],ppCurveBiasCorrFE[[3]],xlab="thetac",ylab="KS statistic")
plot(ppCurveBiasCorrFE[[4]],xlab = "ppvalues",ylab="cumulative density",main="Cumulative density of pp-values at the optimum")
curve(punif,add=T)

The bias corrected estimate using p-curving in the homogeneous treatment effect
case is equal to 0.2, which is spot on. Remember the true treatment effect is
NA. Let’s see what happens when effects are heterogeneous.
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Figure 13.19: Correction for publication bias using p-curving with homogeneous
effects

# I'm keeping only significant and positive estimates
# Maybe this could be enforced within the function for ease of reading and use
ppCurveBiasCorrRE <- ppCurveEstES(thetak=filter(data.meta,id<=17,data.meta$ES>0,abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$theta.1,sigmak=sqrt(filter(data.meta,id<=17,abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$var.ES),thetacl=0,thetach=10,alpha=0.05,ngrid=100)
plot(ppCurveBiasCorrRE[[2]],ppCurveBiasCorrRE[[3]],xlab="thetac",ylab="KS statistic")
plot(ppCurveBiasCorrRE[[4]],xlab = "ppvalues",ylab="cumulative density",main="Cumulative density of pp-values at the optimum")
curve(punif,add=T)
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Figure 13.20: Correction for publication bias using p-curving with heterogeneous
effects

The bias corrected estimate using p-curving in the heterogeneous treatment
effect case is equal to 0.49.

Remark. The approach might be incorrect in the heterogeneous treatment effect
case since we do not normalize using τ2. I think using an estimate of τ2

to normalize the estimates would restore the validity of the procedure. It is
also possible that the distribution of significant p-values is uniform even under
heterogeneity of the treatment effect. In that case, the p-curve approach would
still be valid. This is scope for further reasearch: first some simulations would
be welcome. Simulations by the authors seem to suggest that p-curve does fine
when treatment effects are heterogeneous: see here

Remark. Anther problem with p-curving when correcting for publication bias

http://datacolada.org/67
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is the existence of QRPs: QRPs might bias the bias correction because of an
excess mass around 0.05. Simulations by the author in the original paper show
that this biases the estimate downward.

Remark. Another approach than using the KS statistic could use the distance
between the observed pp-curve in Figure 13.18 and the pp-curve with various
levels of power. Once the power is identified, the effect size is identified. Still
another approach would be to use the standardized distribution of effects (dis-
tributed as a standardized normal) to estimate the mean of the distribution and
then recover the treatment effect.

13.2.2.4 Z-curving

See here.

13.2.2.5 Selection models

Publication bias generates a usual pattern for economists: a selection model.
The probability that a result is published depends on several properties, let’s say
its significance, as measured for example by the t-statistic of a two-sided t-test of
the estimated parameter being null. The resulting distribution of observed effect
sizes is a truncated or censored distribution compared to the distribution of true
effect sizes. It has been a long goal of statisticians and economists to try to
recover properties of the distribution of a latent unobserved variable from what is
observed (think distribution of wages for women, when labor force participation
for women was far lower than it is today).

Statisticians have been using selection models to try to correct for publication
bias since at least Hedges. In this section, I’m going to follow closely Andrews
and Kasy’s approach. Andrews and Kasy carefully delineate non-parameteric
identification of a selection model in the case of heterogeneous treatment effects.
They then present ways to estimate the parameters of this model and propose a
web-app to perform their estimation strategy.

Andrews and Kasy assume that there is a true treatment effect in all the
populations that is equal to θ∗c . In each study k, the true treatment effect θ∗k is
drawn from a distribution with mean θ∗c . If the distribution of θ∗k is degenerate,
then we have homogeneous treatment effects. The estimator of θ∗k in each study,
θ̂∗k, is distributed as a normal centered at θ∗k with variance σ∗2k , whose estimator
in the sample k is σ̂∗2k . The normality assumption is not too crazy here: it
follows from the CLT.

Andrews and Kasy posit that, because of selection bias, we observe only a subset
of these latent effects, noted θ̂k, those for which Dk = 1. Dk is distributed as a
Bernoulli random variable, with probability of success p(Ẑ∗k), where Ẑ∗k = θ̂∗k

σ̂∗
k
is

the test statistic of t-test for the null assumption that θk = 0. So Andrews and
Kasy assume that all publication bias is driven by the value of the t-statistic Ẑ∗k .

https://replicationindex.files.wordpress.com/2018/10/final-revision-874-manuscript-in-pdf-2236-1-4-20180425-mva-final-002.pdf
https://www.aeaweb.org/articles?id=10.1257/aer.20180310
https://www.aeaweb.org/articles?id=10.1257/aer.20180310
https://maxkasy.github.io/home/metastudy/
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Note that it is equivalent to assuming that it is driven by the p-value of this
test, since one is a monotone transformation of the other.

As a consequence of the assumed selection model, the density of observed t-stats
is (noting Z∗k = θ∗k

σ∗
k
and Zk = θk

σk
):

fẐ|Z(ẑ|z) = fẐ∗|Z∗,D=1(ẑ|z)

= Pr(Dk = 1|Ẑ∗k = ẑ, Z∗k = z)
Pr(Dk = 1|Z∗k = z) φ(ẑ − z)

= p(ẑ)
E[p(Ẑ∗k)|Z∗k = z]

φ(ẑ − z).

The first equality is obtained by using Bayes’ equality twice (once to undo the
conditioning on D = 1 and once to generate the conditioning on Z∗k = z) and
the fact that fẐ∗|Z∗ is normally distributed with mean Z∗ and variance 1.

The key result in Andrews and Kasy is their Proposition 3:

Proposition 13.1 (Identification of the true effect in meta-analysis). Under the
assumption that θ∗k ⊥⊥ σ∗k, and that the support of σk contains an open interval,
p(.) is identified up to scale and the distribution of θ∗k is identified.

Proof. See Andrews and Kasy’s supplementary material. Let’s detail the proof
somehow. The proof works by using the way the density of observed Ẑ changes
with precision (π̂k = 1

σ̂k
). Without loss of generality, the authors choose to look

at the density of Ẑ when σ̂k = 1. They define h(z) = fẐ∗|σ̂∗
k
(z|1). The first

insight of the proof is that identifying h(.) identifies p(.) and the distribution
of θ∗k, fθ∗ . When h(.) is identified, fθ∗ is identified by deconvolution since
h = fθ∗ ∗ φ, where ∗ is the convolution operator. This is because we can think
of θ̂∗k = θ∗k + ε∗k, where ε∗k is independent from θ∗k (since θ∗k ⊥⊥ σ∗k) and follows
a normal with mean zero and variance σ̂∗2k , here one. The density of a sum of
independent random variables is the convolution of their densities, hence the
result. Now, we have:

fẐ|σ̂(z|s) = fẐ∗|σ̂∗,D=1(z|z)

= Pr(Dk = 1|Ẑ∗k = z, σ̂∗k = s)
Pr(Dk = 1|σ̂∗k = s) fẐ∗|σ̂∗(z|s)

= p(z)
E[p(Ẑ∗k)|σ̂∗k = s]

fẐ∗|σ̂∗(z|s).

As a consequence, we have:

https://www.aeaweb.org/content/file?id=10286
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p(z) = E[p(Ẑ∗k)|σ̂∗k = s]
fẐ|σ̂(z|s)
h(z) .

So, once we know h(z), we know p(z) up to a constant, since fẐ|σ̂(z|s) is known
by definition, and E[p(Ẑ∗k)|σ̂∗k = s] does not change with z.

In order to identify h(z), we look at how the density of observed effects changes
when precision changes:

g(z) =
∂ ln fẐ|σ̂(z| 1π )

∂π
|π=1

= C1 +
∂ ln fẐ∗|σ̂∗(z|

1
π )

∂π
|π=1.

C1 is a constant in z. This is because p(z) does not depend on π and because
E[p(Ẑ∗k)|σ̂∗k = s] does not depend on z. Note that g(z) is identified in the
population.

Now, using the fact that, because θ∗k ⊥⊥ σ∗k, we have h = fθ∗ ∗ φ, and thus
fẐ∗|σ̂∗(z|

1
π ) =

∫
φ(z − tπ)dfθ∗(t), and the fact that φ′(z) = −zφ(z), we have:

∂fẐ∗|σ̂∗(z|1)
∂z

= −
∫

(z − t)φ(z − t)dfθ∗(t)

∂2fẐ∗|σ̂∗(z|1)
∂z2 = −fẐ∗|σ̂∗(z|1) +

∫
(z − t)2φ(z − t)dfθ∗(t)

∂fẐ∗|σ̂∗(z|
1
π )

∂π
|π=1 =

∫
t(z − t)φ(z − t)dfθ∗(t)

= −
[
fẐ∗|σ̂∗(z|1) + z

∂fẐ∗|σ̂∗(z|1)
∂z

+
∂2fẐ∗|σ̂∗(z|1)

∂z2

]
.

The last equation comes from rearranging all the terms in the various terms
and factoring what remains. Note that fẐ∗|σ̂∗(z|1) disappears when you add
∂2fẐ∗|σ̂∗ (z|1)

∂z2 . REgrouping under the intergal sign, factoring and simplifying gives
the result.

Now, using the expression for g(z) above, we have a second order differential
equation in h(.):

h′′(z) = (C1 − 1− g(z))h(z)− zh′(z).
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Given C1 and initial conditions h(0) = h0 and h′(0) = h′0, there is a unique
solution to this equation, thereby identifying h(.), p(.) and fθ∗ . The rest of the
proof in Andrews and Kasy’s supplementary material shows that C1, h0 and
h′0 are all identified. The proof builds new differential equations involving the
second order derivative of fẐ| 1π with respect to π. The constants are identified
after successive derivations with respect to z so that we have an equation for
them that depends on the third order derivative of g.

Remark. The authors derive an equation for the case where θ∗ is normally
distributed with mean θ and variance τ2. The second order differential equation
becomes:

− 1
τ2 + 1 = C1 − g(z)− 1 + z

z − θ
τ2 + 1 −

(
z − θ
τ2 + 1

)
.

The authors argue that evaluating this equation for different values of z pins
down θ and τ2. It seems not enough to prove identification since we need
uniqueness of the parameter values obtained. There are already two values of θ
compatible for agiven z and τ2. We need more to ensure uniqueness.

Remark. Note that p(z) does not depend on π is not a trivial assumption. It stems
from assuming that the probability of publication only depends on π through
Ẑ∗. It means for example that editors and authors do not look at precision
independently of its effect on the t-statistic. The authors study identification in
this case, assuming independence of the probabilities of selection based on both
approaches.

For estimation, Andrews and Kasy follow the approach in Hedges and estimate
their model by parametric maximum likelihood. They also propose in their
supplementary material an approach based on a Generalized Method of Moments
estimator that tries to emulate their identification strategy. Finally, they offer a
web-app to implement their most straightforward estimators.

The likelihood can be written as:

fθ̂,σ̂(t, s) =
p
(
t
s

) ∫
φ
(
t−θ
s

)
fθ∗(θ)dθ∫

p
(
t′

s

) ∫
φ
(
t′−θ
s

)
fθ∗(θ)dθdt′

fσ(s).

Under the assumption that θ∗ is normally distributed with mean θ∗c and variance
τ2, we have the following likelihood:

fn
θ̂,σ̂

(t, s) =
p
(
t
s

)
φ
(

t−θ∗c√
s2+τ2

)
∫
p
(
t′

s

)
φ
(

t′−θ∗c√
s2+τ2

)
dt′
fσ(s).

https://www.aeaweb.org/content/file?id=10286
https://projecteuclid.org/euclid.ss/1177011364
https://www.aeaweb.org/content/file?id=10286
https://maxkasy.github.io/home/metastudy/
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Assuming that p(.) is a step function such that p(z) = p1 if z < 1.96 and p(z) = 1
if z ≥ 1.96, we have:

fn
θ̂,σ̂

(t, s) =
p
(
t
s

)
φ
(

t−θ∗c√
s2+τ2

)
p1Φ

(
1.96s−θ∗c√
s2+τ2

)
+ 1− Φ

(
1.96s−θ∗c√
s2+τ2

)fσ(s).

The likelihood is simply the product of this term computed at each values t = θ̂k
and s = σ̂k:

L(p1, θ
∗
c , τ

2) = ΠN
k=1f

n
θ̂,σ̂

(θ̂k, σ̂k)

Taking logs, we see that fσ(s) is a constant that does not contribute to the
likelihood. We solve for the optimal vector of parameters by using a nonlinear
optimisation routine. The authors use nlminb. One could also probably use
optim. What is nice with these procedures is that they do not require computing
the first and second order derivatives of the objective function: they compute
them numerically.

Let’s write an R function that maximizes this log likelihood:
# log-likelihood
Lk <- function(thetak,sigmak,p1,thetac,tau){

f <- ifelse(thetak/sigmak<qnorm(1-0.05/2),p1,1)*dnorm((thetak-thetac)/sqrt(sigmakˆ2+tauˆ2))/(1-pnorm(qnorm(1-0.05/2)*sigmak-thetac/sqrt(sigmakˆ2+tauˆ2))*(1-p1))
return(sum(log(f)))

}
#log-likelihood prepared for nlminb: vector of parameters and minimization
Lk.param <- function(param,thetak,sigmak){
f <- Lk(thetak=thetak,sigmak=sigmak,p1=param[[1]],thetac=param[2],tau=param[3])
return(-f)

}

Example 13.18. Let’s see how this works in our example. Let’s first prepare
the sample. We are going to simulate two procedures of censoring: one with
p1 = 0.5 and one with p1 = 0.
# sample with p1=0: only positive significant results
# homogeneous effects
thetak.FE.0 <- filter(data.meta,id<=17,data.meta$ES>0,abs(data.meta$ES/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$ES
sigmak.FE.0 <- sqrt(filter(data.meta,id<=17,abs(data.meta$ES/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$var.ES)
# heterogeneous effects
thetak.RE.0 <- filter(data.meta,id<=17,data.meta$theta.1>0,abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$theta.1
sigmak.RE.0 <- sqrt(filter(data.meta,id<=17,abs(data.meta$theta.1/sqrt(data.meta$var.ES))>=qnorm((1+delta.2)/2))$var.ES)
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Table 13.1: Parameter estimates of Andrews and Kasy selection model

$p_1$ $\theta_c$ $\tau$
FE0 0.00 -100842.04 15537.35
FE50 0.04 -281350.82 243482.43
RE0 0.00 -33.56 4.82
RE50 0.06 -202455.05 197821.07

# sample with p1=0.1, for insignificant or negative results
p1 <- 0.5
# drawing 10% among insignificant and negative observations
set.seed(1234)
set.FE <- ifelse(runif(length(filter(data.meta,id<=17,data.meta$ES/sqrt(data.meta$var.ES)<qnorm((1+delta.2)/2))$ES))<=p1,1,0)==1
set.seed(1234)
set.RE <- ifelse(runif(length(filter(data.meta,id<=17,data.meta$theta.1/sqrt(data.meta$var.ES)<qnorm((1+delta.2)/2))$theta.1))<=p1,1,0)==1

# homogeneous effects
thetak.FE.1 <- c(thetak.FE.0,filter(data.meta,id<=17,data.meta$ES/sqrt(data.meta$var.ES)<qnorm((1+delta.2)/2))$ES[which(set.FE)])
sigmak.FE.1 <- c(sigmak.FE.0,sqrt(filter(data.meta,id<=17,data.meta$ES/sqrt(data.meta$var.ES)<qnorm((1+delta.2)/2))$var.ES[which(set.FE)]))
# heterogeneous effects
thetak.RE.1 <- c(thetak.RE.0,filter(data.meta,id<=17,data.meta$theta.1/sqrt(data.meta$var.ES)<qnorm((1+delta.2)/2))$theta.1[which(set.RE)])
sigmak.RE.1 <- c(sigmak.RE.0,sqrt(filter(data.meta,id<=17,data.meta$theta.1/sqrt(data.meta$var.ES)<qnorm((1+delta.2)/2))$var.ES[which(set.RE)]))

# optimization procedure using nlminb
MaxEval<-10ˆ5
MaxIter<-10ˆ5
Tol<-10ˆ(-8)
stepsize<-10ˆ(-6)
lower.b <- c(0,-Inf,0)
upper.b <- c(1,Inf,Inf)
start.val <- c(0.5,1,1)

optim.Lk.FE.0 <- nlminb(objective=Lk.param, start=start.val,lower=lower.b,upper=upper.b,control=list(eval.max=MaxEval,iter.max=MaxIter,abs.tol=Tol),thetak=thetak.FE.0,sigmak=sigmak.FE.0)
optim.Lk.FE.1 <- nlminb(objective=Lk.param, start=start.val,lower=lower.b,upper=upper.b,control=list(eval.max=MaxEval,iter.max=MaxIter,abs.tol=Tol),thetak=thetak.FE.1,sigmak=sigmak.FE.1)
optim.Lk.RE.0 <- nlminb(objective=Lk.param, start=start.val,lower=lower.b,upper=upper.b,control=list(eval.max=MaxEval,iter.max=MaxIter,abs.tol=Tol),thetak=thetak.RE.0,sigmak=sigmak.RE.0)
optim.Lk.RE.1 <- nlminb(objective=Lk.param, start=start.val,lower=lower.b,upper=upper.b,control=list(eval.max=MaxEval,iter.max=MaxIter,abs.tol=Tol),thetak=thetak.RE.1,sigmak=sigmak.RE.1)

paramAK <- rbind(optim.Lk.FE.0$par,optim.Lk.FE.1$par,optim.Lk.RE.0$par,optim.Lk.RE.1$par)
colnames(paramAK) <- c("$p_1$","$\\theta_c$","$\\tau$")
rownames(paramAK) <- c("FE0","FE50","RE0","RE50")
knitr::kable(paramAK,digits=2,caption='Parameter estimates of Andrews and Kasy selection model',align=c('l','c','c','c'),booktabs=TRUE)

Table 13.1 shows the parameter estimates of the model for various data configura-
tions (no treatment effect heterogeneity vs treatment effect heterogeneity and 0%
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or 50% of non significant observations published). The results do not look great.
The estimates of p1 are correct when no non significant effects are published,
by they are not nearly large enough when 50% of insignificant observations are
published. The estimates of θc are completely crazy: all negative and large in
asbolute value while the true value of θc is θc = NA. The estimates of τ are
also all misleading. For fixed effects, the estimates should be zero. For random
effects, the true τ is τ = 0.5. The estimates are much too large, apart from the
third one that is close to home. Overall, barring a coding error, selection models
do not look super promising here.

13.2.2.6 Fukumura

13.2.2.7 Trim and fill

13.2.3 Getting rid of publication bias: registered reports
and pre-analysis plans

13.2.4 Detection of and correction for site selection bias
13.2.5 Vote counting and publication bias
13.2.6 The value of a statistically significant result
Publication bias and random effects
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Chapter 15

Mediation Analysis

When we have estimated the treatment effect of a program, we sometimes wonder
by which channels the program impact has been obtained. For example, has
a Job Training Program been successful because it has increases the human
capital of an agent, or simply by signalling to employers her motivation? The
question of separating between the various channels into which a program impact
can be decomposed becomes especially important when a program has several
components, and we wish to ascertain which one is the more important. Another
reason why we might be interested in which channel precisely is responsible for
the program impact is because which channel dominates might give us indications
about which theoretical mechanism is at play.

In this chapter, I am going to first delineate the general framework for mediation
analysis and the way mediation analysis can be undertaken in the ideal case of
a Randomized Controlled Trial. Then, I am going to present the fundamental
problem of mediation analysis (which turns out to be one version of the con-
founders problem we know all too well) and the various techniques that have
been developed in order to solve for it.

15.1 Mediation analysis: a framework
Mediation analysis posits the existence of a mediator, Mi, which is driving part
or the totality of the effect of the treatment on outcome Yi. Let’s start with
a binary mediator, in order to keep things simple: Mi ∈ {0, 1}. We can thus
define four potential outcomes Y d,d

′

i , (d, d′) ∈ {0, 1}2. We can also define two
potential outcomes for the mediator: Md

i , d ∈ {0, 1}.

The switching equation can now be written as follows:

361
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Yi =


Y 1,1
i if Di = 1 and Mi = 1
Y 1,0
i if Di = 1 and Mi = 0
Y 0,1
i if Di = 0 and Mi = 1
Y 0,0
i if Di = 0 and Mi = 0

= Y 1,1
i DiMi + Y 0,1

i (1−Di)Mi + Y 1,0
i Di(1−Mi) + Y 0,0

i (1−Di)(1−Mi).

We are now equipped to define two sets of causal mediation effects: the indirect
(or mediated) effect and the direct (or unmediated) effect (we follow Imai, Keene
and Tingley (2010)):

∆Ym(d)
i = Y

d,M1
i

i − Y d,M
0
i

i

∆Yu(d)
i = Y

1,Md
i

i − Y 0,Md
i

i .

∆Ym(d)
i is the causal effect of the treatment on the outcome acting through

the mediator only, while keeping the value of the treatment status fixed at d.
∆Yu(m)
i is the causal effect of the treatment on the outcome acting through the

treatment only, while keeping the value of the mediator fixed at Mi(d). In the
absence of interaction effects between the treatment and the mediator, we have
∆Ym(0)
i = ∆Ym(1)

i = ∆Ym
i and ∆Yu(0)

i = ∆Yu(1)
i = ∆Yu

i .

The individual effect of the treatment can be decomposed in two components:

∆Y
i = Y

1,M1
i

i − Y 0,M0
i

i

= Y
1,M1

i
i − Y 1,M0

i
i + Y

1,M0
i

i − Y 0,M0
i

i = ∆Ym(1)
i + ∆Yu(0)

i

= Y
1,M1

i
i − Y 0,M1

i
i + Y

0,M1
i

i − Y 0,M0
i

i = ∆Yu(1)
i + ∆Ym(0)

i .

In the absence of interaction effects between the mediator and the treatment,
this decomposition is unique. The decomposition can also be applied to the TT
parameter:

∆Y
TT = E[Y 1,M1

i
i − Y 0,M0

i
i |Di = 1]

= ∆Ym(1)
TT + ∆Yu(0)

TT

= ∆Yu(1)
TT + ∆Ym(0)

TT ,

with:

https://doi.org/10.1037/a0020761
https://doi.org/10.1037/a0020761
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∆Ym(d)
TT = E[∆Ym(d)

i |Di = 1]

∆Yu(d)
TT = E[∆Yu(d)

i |Di = 1].

Here again, the decomposition will be unique if there are no interactions between
the treatment and the mediator variable.

Example 15.1. Let’s see how this works in our example.

The first order of business is to set up a model:

y1,1
i = y0

i + ᾱ+ τ1 + θµi + ηi

y1,0
i = y0

i + ᾱ+ θµi + ηi

y0,1
i = µi + δ + τ0 + U0

i

y0,0
i = µi + δ + U0

i

U0
i = ρUBi + εi

yBi = µi + UBi

UBi ∼ N (0, σ2
U )

Mi = 1[ξyBi + ψDi + VMi ≤ ȳM ]
VMi = γM (µi − µ̄) + ωMi

Di = 1[yBi + Vi ≤ ȳ]
Vi = γ(µi − µ̄) + ωi

(ηi, ωi, ωMi ) ∼ N (0, 0, 0, σ2
η, σ

2
ω, σ

2
ωM , ρη,ω, ρη,ωM , ρω,ωM )

Let us choose some parameter values and simulate the model.
param <- c(8,.5,.28,1500,1500,0.9,0.01,0.05,0.05,0.05,0.1,0.2,0.1,1,-0.25,0.1,0.05,7.98,0.28,1,0,0,0)
names(param) <- c("barmu","sigma2mu","sigma2U","barY","barYM","rho","theta","sigma2epsilon","sigma2eta","delta","baralpha","tau1","tau0","xi","psi","gamma","gammaM","baryB","sigma2omega","sigma2omegaM","rhoetaomega","rhoetaomegaM","rhoomegaomegaM")

Let us now simulate the data:
set.seed(1234)
N <-1000
cov.eta.omega.omegaM <- matrix(c(param["sigma2eta"],param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["rhoetaomegaM"]*sqrt(param["sigma2eta"]*param["sigma2omegaM"]),

param["rhoetaomega"]*sqrt(param["sigma2eta"]*param["sigma2omega"]),param["sigma2omega"],param["rhoomegaomegaM"]*sqrt(param["sigma2omega"]*param["sigma2omegaM"]),
param["rhoetaomegaM"]*sqrt(param["sigma2eta"]*param["sigma2omegaM"]),param["rhoomegaomegaM"]*sqrt(param["sigma2omega"]*param["sigma2omegaM"]),param["sigma2omegaM"]),ncol=3,nrow=3)

eta.omega <- as.data.frame(mvrnorm(N,c(0,0,0),cov.eta.omega.omegaM))
colnames(eta.omega) <- c('eta','omega','omegaM')
mu <- rnorm(N,param["barmu"],sqrt(param["sigma2mu"]))
UB <- rnorm(N,0,sqrt(param["sigma2U"]))
yB <- mu + UB
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YB <- exp(yB)
Ds <- rep(0,N)
V <- param["gamma"]*(mu-param["barmu"])+eta.omega$omega
Ds[yB+V<=log(param["barY"])] <- 1
VM <- param["gammaM"]*(mu-param["barmu"])+eta.omega$omegaM
M <- rep(0,N)
M[param['xi']*yB+param['psi']*Ds+VM<=log(param["barYM"])] <- 1
M1 <- rep(0,N)
M1[param['xi']*yB+param['psi']+VM<=log(param["barYM"])] <- 1
M0 <- rep(0,N)
M0[param['xi']*yB+VM<=log(param["barYM"])] <- 1
epsilon <- rnorm(N,0,sqrt(param["sigma2epsilon"]))
U0 <- param["rho"]*UB + epsilon
alpha <- param["baralpha"]+ param["theta"]*mu + eta.omega$eta
y00 <- mu + U0 + param["delta"]
y01 <- mu + U0 + param['tau0']+ param["delta"]
y10 <- y00+alpha
y11 <- y00+alpha+param['tau1']
y1 <- y11*M+y10*(1-M)
y0 <- y01*M+y00*(1-M)
y1M1 <- y00+alpha+param['tau1']*M1
y1M0 <- y00+alpha+param['tau1']*M0
y0M1 <- y00 + param['tau0']*M1
y0M0 <- y00 + param['tau0']*M0
y <- y11*Ds*M+y10*Ds*(1-M)+y01*(1-Ds)*M+y00*(1-Ds)*(1-M)

Let us finally compute the values of TT and of the mediated and unmediated
average treatment effects on the treated in the sample.
# treatment on the treated
TT <- mean(y1[Ds==1]-y0[Ds==1])
# mediated treatment effects
TTm1 <- mean(y1M1[Ds==1]-y1M0[Ds==1])
TTm0 <- mean(y0M1[Ds==1]-y0M0[Ds==1])
# unmediated treatment effects
TTu1 <- mean(y1M1[Ds==1]-y0M1[Ds==1])
TTu0 <- mean(y1M0[Ds==1]-y0M0[Ds==1])

Pb here with mediation.
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15.2 The Fundamental Problem of Mediation
Analysis

15.3 Mediation analysis under unconfounded-
ness

15.4 Mediation analysis with panel data

15.5 Mediation analysis with instruments
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Appendix A

Proofs

A.1 Proofs of results in Chapter 2

A.1.1 Proof of Theorem 2.3

In order to use Theorem 2.2 for studying the behavior of ˆ∆Y
WW , we have to

prove that it is unbiased and we have to compute V[ ˆ∆Y
WW ]. Let’s first prove

that the WW estimator is an unbiased estimator of TT :

Lemma A.1 (Unbiasedness of ˆ∆Y
WW ). Under Assumptions 1.7, 2.1 and 2.2,

E[ ˆ∆Y
WW ] = ∆Y

TT .

Proof. In order to prove Lemma A.1, we are going to use a trick. We are going to
compute the expectation of the WW estimator conditional on a given treatment
allocation. Because the resulting estimate is independent of treatment allocation,
we will have our proof. This trick simplifies derivations a lot and is really natural:
think first of all the samples with the same treatment allocation, then average
your results over all possible treatment allocations.

367
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E[ ˆ∆Y
WW ] = E[E[ ˆ∆Y

WW |D]]

= E[E[ 1∑N
i=1Di

N∑
i=1

YiDi −
1∑N

i=1(1−Di)

N∑
i=1

Yi(1−Di)|D]]

= E[E[ 1∑N
i=1Di

N∑
i=1

YiDi|D]− E[ 1∑N
i=1(1−Di)

N∑
i=1

Yi(1−Di)|D]]

= E[ 1∑N
i=1Di

E[
N∑
i=1

YiDi|D]− 1∑N
i=1(1−Di)

E[
N∑
i=1

Yi(1−Di)|D]]

= E[ 1∑N
i=1Di

N∑
i=1

E[YiDi|D]− 1∑N
i=1(1−Di)

N∑
i=1

E[Yi(1−Di)|D]]

= E[ 1∑N
i=1Di

N∑
i=1

E[YiDi|Di]−
1∑N

i=1(1−Di)

N∑
i=1

E[Yi(1−Di)|Di]]

= E[ 1∑N
i=1Di

N∑
i=1

DiE[Yi|Di = 1]− 1∑N
i=1(1−Di)

N∑
i=1

(1−Di)E[Yi|Di = 0]]

= E[
∑N
i=1Di∑N
i=1Di

E[Yi|Di = 1]−
∑N
i=1(1−Di)∑N
i=1(1−Di)

E[Yi|Di = 0]]

= E[E[Yi|Di = 1]− E[Yi|Di = 0]]
= E[Yi|Di = 1]− E[Yi|Di = 0]
= ∆Y

TT .

The first equality uses the Law of Iterated Expectations (LIE). The second and
fourth equalities use the linearity of conditional expectations. The third equality
uses the fact that, conditional on D, the number of treated and untreated is
a constant. The fifth equality uses Assumption 2.2. The sixth equality uses
the fact that E[YiDi|Di] = DiE[Yi ∗ 1|Di = 1] + (1−Di)E[Yi ∗ 0|Di = 0]. The
seventh and ninth equalities use the fact that E[Yi|Di = 1] is a constant. The
last equality uses Assumption 1.7.

Let’s now compute the variance of the WW estimator:

Lemma A.2 (Variance of ˆ∆Y
WW ). Under Assumptions 1.7, ?? and 2.2,

V[ ˆ∆Y
WW ] = 1− (1− Pr(Di = 1))N

N Pr(Di = 1) V[Y 1
i |Di = 1] + 1− Pr(Di = 1)N

N(1− Pr(Di = 1))V[Y 0
i |Di = 0].

Proof. Same trick as before, but now using the Law of Total Variance (LTV):
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V[ ˆ∆Y
WW ] = E[V[ ˆ∆Y

WW |D]] + V[E[ ˆ∆Y
WW |D]]

= E[V[ 1∑N
i=1Di

N∑
i=1

YiDi −
1∑N

i=1(1−Di)

N∑
i=1

Yi(1−Di)|D]]

= E[V[ 1∑N
i=1Di

N∑
i=1

YiDi|D]] + E[V[ 1∑N
i=1(1−Di)

N∑
i=1

Yi(1−Di)|D]]

+ E[C[ 1∑N
i=1Di

N∑
i=1

YiDi,
1∑N

i=1(1−Di)

N∑
i=1

Yi(1−Di)|D]]

= E[ 1
(
∑N
i=1Di)2

V[
N∑
i=1

YiDi|D]] + E[ 1
(
∑N
i=1(1−Di))2

V[
N∑
i=1

Yi(1−Di)|D]]

= E[ 1
(
∑N
i=1Di)2

V[
N∑
i=1

YiDi|Di]] + E[ 1
(
∑N
i=1(1−Di))2

V[
N∑
i=1

Yi(1−Di)|Di]]

= E[ 1
(
∑N
i=1Di)2

N∑
i=1

DiV[Yi|Di = 1]] + E[ 1
(
∑N
i=1(1−Di))2

N∑
i=1

(1−Di)V[Yi|Di = 0]]

= V[Yi|Di = 1]E[ 1∑N
i=1Di

] + V[Yi|Di = 0]E[ 1∑N
i=1(1−Di)

]

= 1− (1− Pr(Di = 1))N

N Pr(Di = 1) V[Y 1
i |Di = 1] + 1− Pr(Di = 1)N

N(1− Pr(Di = 1))V[Y 0
i |Di = 0].

The first equality stems from the LTV. The second and third equalities stems
from the definition of the WW estimator and of the variance of a sum of
random variables. The fourth equality stems from Assumption 2.2, which means
that the covariance across observations is zero, and from the formula for a
variance of a random variable multiplied by a constant. The fifth and sixth
equalities stems from Assumption 2.2 and from V[YiDi|Di] = DiV[Yi ∗ 1|Di =
1] + (1−Di)V[Yi ∗ 0|Di = 0]. The seventh equality stems from V[Yi|Di = 1] and
V[Yi|Di = 0] being constant. The last equality stems from the formula for the
expectation of the inverse of a sum of Bernoulli random variables with at least
one of them taking value one which is the case under Assumption 2.1.

Using Theorem 2.2, we have:

2ε ≤ 2

√
1

N(1− δ)

(
1− (1− Pr(Di = 1))N

Pr(Di = 1) V[Y 1
i |Di = 1] + 1− Pr(Di = 1)N

(1− Pr(Di = 1))V[Y 0
i |Di = 0]

)

≤ 2

√
1

N(1− δ)

(
V[Y 1

i |Di = 1]
Pr(Di = 1) + V[Y 0

i |Di = 0]
(1− Pr(Di = 1))

)
,
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where the second equality stems from the fact that (1−Pr(Di=1))N
Pr(Di=1) V[Y 1

i |Di =

1] + Pr(Di=1)N
(1−Pr(Di=1))V[Y 0

i |Di = 0] ≥ 0. This proves the result.

A.1.2 Proof of Theorem 2.5
Before proving Theorem 2.5, let me state a very useful result: ˆWW can be
computed using OLS:

Lemma A.3 (WW is OLS). Under Assumption 2.1, the OLS coefficient β in
the following regression:

Yi = α+ βDi + Ui

is the WW estimator:

β̂OLS =
1
N

∑N
i=1

(
Yi − 1

N

∑N
i=1 Yi

)(
Di − 1

N

∑N
i=1Di

)
1
N

∑N
i=1

(
Di − 1

N

∑N
i=1Di

)2

= ˆ∆Y
WW .

Proof. In matrix notation, we have:

 Y1
...
YN


︸ ︷︷ ︸

Y

=

 1 D1
...

...
1 DN


︸ ︷︷ ︸

X

(
α
β

)
︸ ︷︷ ︸

Θ

+

 U1
...
UN


︸ ︷︷ ︸

U

The OLS estimator is:

Θ̂OLS = (X ′X)−1X ′Y

Under the Full Rank Assumption, X ′X is invertible and we have:

(X ′X)−1 =
(

N
∑N
i=1Di∑N

i=1Di

∑N
i=1D

2
i

)−1

= 1

N
∑N
i=1D

2
i −

(∑N
i=1Di

)2

( ∑N
i=1D

2
i −

∑N
i=1Di

−
∑N
i=1Di N

)
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For simplicity, I omit the summation index:

Θ̂OLS = 1
N
∑
D2
i − (

∑
Di)2

( ∑
D2
i −

∑
Di

−
∑
Di N

)( ∑
Yi∑
YiDi

)
= 1
N
∑
D2
i − (

∑
Di)2

( ∑
D2
i

∑
Yi −

∑
Di

∑N
i=1 YiDi

−
∑
Di

∑
Yi +N

∑
YiDi

)

Using D2
i = Di, we have:

Θ̂OLS =

 (
∑

Di)(
∑

Yi−
∑

YiDi)
(
∑

Di)(N−
∑

Di)
N
∑

YiDi−
∑

Di
∑

Yi

N
∑

Di−(
∑

Di)2

 =


∑

(YiDi+Yi(1−Di))−
∑

YiDi∑
(1−Di)

N2

N2

1
N

∑
YiDi− 1

N

∑
Di

1
N

∑
Yi+ 1

N

∑
Di

1
N

∑
Yi− 1

N

∑
Di

1
N

∑
Yi

1
N

∑
Di−2( 1

N

∑
Di)2+( 1

N

∑
Di)2



=


∑

Yi(1−Di)∑
(1−Di)

1
N

∑
(YiDi−Di 1

N

∑
Yi−Yi 1

N

∑
Di+ 1

N

∑
Di

1
N

∑
Yi)

1
N

∑(
Di−2Di 1

N

∑
Di+( 1

N

∑
Di)2)

 =


∑

Yi(1−Di)∑
(1−Di)

1
N

∑
(Yi− 1

N

∑
Yi)(Di− 1

N

∑
Di)

1
N

∑
(Di− 1

N

∑
Di)2

 ,

which proves the first part of the lemma. Now for the second part of the lemma:

β̂OLS =
∑
YiDi − 1

N

∑
Di

∑
Yi∑

Di

(
1− 1

N

∑
Di

) =
∑
YiDi − 1

N

∑
Di

∑
(YiDi + (1−Di)Yi)∑

Di

(
1− 1

N

∑
Di

)
=
∑
YiDi

(
1− 1

N

∑
Di

)
− 1

N

∑
Di

∑
(1−Di)Yi∑

Di

(
1− 1

N

∑
Di

)
=
∑
YiDi∑
Di
−

1
N

∑
(1−Di)Yi(

1− 1
N

∑
Di

)
=
∑
YiDi∑
Di
−

1
N

∑
(1−Di)Yi

1
N

∑
(1−Di)

=
∑
YiDi∑
Di
−
∑

(1−Di)Yi∑
(1−Di)

= ˆ∆Y
WW ,

which proves the result.

Now, let me state the most important lemma behind the result in Theorem 2.5:

Lemma A.4 (Asymptotic Distribution of the OLS Estimator). Under Assump-
tions 1.7, 2.1, 2.2 and 2.3, we have:
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√
N(Θ̂OLS −Θ) d→ N

(
0
0 , σ−1

XXVxuσ
−1
XX

)
,

with

σ−1
XX =

( Pr(Di=1)
Pr(Di=1)(1−Pr(Di=1)) − Pr(Di=1)

Pr(Di=1)(1−Pr(Di=1))
− Pr(Di=1)

Pr(Di=1)(1−Pr(Di=1))
1

Pr(Di=1)(1−Pr(Di=1))

)

Vxu = E[U2
i

(
1 Di

Di Di

)
]

Proof.
√
N(Θ̂OLS −Θ) =

√
N((X ′X)−1X ′Y −Θ)

=
√
N((X ′X)−1X ′(XΘ + U)−Θ)

=
√
N((X ′X)−1X ′XΘ + (X ′X)−1X ′U)−Θ)

=
√
N(X ′X)−1X ′U

= N(X ′X)−1
√
N

N
X ′U

Using Slutsky’s Theorem, we can study both terms separately.

Before stating Slutsky’s Theorem, we need to define a new term: convergence
in probability (this is a simpler version of convergence in distribution). We
say that a sequence XN converges in probability to the constant x if, ∀ε > 0,
limN→∞ Pr(|XN − x| > ε) = 0.
We denote XN

p→ x or plim(XN ) = x.

Slutsky’s Theorem states that if YN
d→ y and plim(XN ) = x, then:

1. XN + YN
d→ x+ y

2. XNYN
d→ xy

3. YN
XN

d→ x
y if x 6= 0

Using this theorem, we have:

√
N(Θ̂OLS −Θ) d→ σ−1

XXxu,

Where σ−1
XX is a matrix of constants and xu is a random variable.

Let’s begin with
√
N
N X ′U

d→ xu:
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√
N

N
X ′U =

√
N

(
1
N

∑N
i=1 Ui

1
N

∑N
i=1DiUi

)

In order to determine the asymptotic distribution of
√
N
N X ′U , we are going to

use the vector version of the CLT:

If Xi and Yi are two i.i.d. random variables with finite first and second moments,
we have:

√
N

(
1
N

∑N
i=1Xi − E[Xi]

1
N

∑N
i=1 Yi − E[Yi]

)
d→ N

(
0
0 ,V

)
,

where V is the population covariance matrix of Xi and Yi.

We know that, under Assumption 1.7, both random variables have mean zero:

E[Ui] = E[Ui|Di = 1] Pr(Di = 1) + E[Ui|Di = 0] Pr(Di = 0) = 0
E[UiDi] = E[Ui|Di = 1] Pr(Di = 1) = 0

Their covariance matrix Vxu can be computed as follows:

Vxu = E[
(

Ui
UiDi

)(
Ui UiDi

)
]− E[

(
Ui
UiDi

)
]E[
(
Ui UiDi

)
]

= E[
(

U2
i U2

i Di

Ui2Di U2
i D

2
i

)
] = E[U2

i

(
1 Di

Di D2
i

)
] = E[U2

i

(
1 Di

Di Di

)
]

Using the Vector CLT, we have that
√
N
N X ′U

d→ N
(

0
0 ,Vxu

)
.

Let’s show now that plimN(X ′X)−1 = σ−1
XX :
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N(X ′X)−1 = N

N
∑N
i=1Di −

(∑N
i=1Di

)2

( ∑N
i=1Di −

∑N
i=1Di

−
∑N
i=1Di N

)

= 1
N

1
1
N

∑N
i=1Di −

(
1
N

∑N
i=1Di

)2

( ∑N
i=1Di −

∑N
i=1Di

−
∑N
i=1Di N

)

= 1
1
N

∑N
i=1Di −

(
1
N

∑N
i=1Di

)2

(
1
N

∑N
i=1Di − 1

N

∑N
i=1Di

− 1
N

∑N
i=1Di 1

)

plimN(X ′X)−1 = 1

plim 1
N

∑N
i=1Di −

(
plim 1

N

∑N
i=1Di

)2

(
plim 1

N

∑N
i=1Di −plim 1

N

∑N
i=1Di

−plim 1
N

∑N
i=1Di 1

)

= 1
Pr(Di = 1)− Pr(Di = 1)2

(
Pr(Di = 1) −Pr(Di = 1)
−Pr(Di = 1) 1

)
= σ−1

XX

The fourth equality uses Slutsky’s Theorem. The fifth equality uses the Law
of Large Numbers (LLN): if Yi are i.i.d. variables with finite first and second
moments, plimN→∞

1
N

∑N
i=1 Yi = E[Yi].

In order to complete the proof, we have to use the Delta Method Theorem. This
theorem states that:

√
N( X̄N − E[Xi]

ȲN − E[Yi]
) d→ N ( 0

0 ,V)

⇒
√
N(g(X̄N , ȲN )− g(E[Xi],E[Yi])

d→ N (0, G′VG)

where G(u) = ∂g(u)
∂u and G = G(E[Xi],E[Yi]).

In our case, g(xu) = σ−1
XXxu, so G(xu) = σ−1

XX . The results follows from that
and from the symmetry of σ−1

XX .

A last lemma uses the previous result to derive the asymptotic distribution of
ˆWW :

Lemma A.5 (Asymptotic Distribution of ˆWW ). Under Assumptions 1.7, 2.1,
2.2 and 2.3, we have:

√
N( ˆ∆Y

WW −∆Y
TT ) d→ N

(
0, V[Y 1

i |Di = 1]
Pr(Di = 1) + V[Y 0

i |Di = 0]
1− Pr(Di = 1)

)
.
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Proof. In order to derive the asymptotic distribution of WW, I use first Lemma
A.3 which implies that the asymptotic distribution of WW is the same as that
of β̂OLS . Now, from Lemma A.4, we know that

√
N(β̂OLS − β) d→ N (0, σ2

β),
where σ2

β is the lower diagonal term of σ−1
XXVxuσ

−1
XX . Using the convention

p = Pr(Di = 1), we have:

σ−1
XXVxuσ

−1
XX =

(
p

p(1−p) − p
p(1−p)

− p
p(1−p)

1
p(1−p)

)
E[U2

i

(
1 Di

Di Di

)
]
(

p
p(1−p) − p

p(1−p)
− p
p(1−p)

1
p(1−p)

)

= 1
(p(1− p))2

(
pE[U2

i ]− pE[U2
i Di] pE[U2

i Di]− pE[U2
i Di]

−pE[U2
i ] + E[U2

i Di] −pE[U2
i Di] + E[U2

i Di]

)(
p −p
−p 1

)
= 1

(p(1− p))2

(
p2(E[U2

i ]− E[U2
i Di]) p2(E[U2

i Di]− E[U2
i ])

p2(E[U2
i Di]− E[U2

i ]) p2E[U2
i ] + (1− 2p)E[U2

i Di]

)

The final result comes from the fact that:

E[U2
i ] = E[U2

i |Di = 1]p+ (1− p)E[U2
i |Di = 0]

= pV[Y 1
i |Di = 1] + (1− p)V[Y 0

i |Di = 0]
E[U2

i Di] = E[U2
i |Di = 1]p

= pV[Y 1
i |Di = 1].

As a consequence:

σ2
β = 1

(p(1− p))2

(
V[Y 1

i |Di = 1]p(p2 − 2p+ 1) + p2(1− p)V[Y 0
i |Di = 0]

)
= 1

(p(1− p))2

(
V[Y 1

i |Di = 1]p(1− p)2 + p2(1− p)V[Y 0
i |Di = 0]

)
= V[Y 1

i |Di = 1]
p

+ V[Y 0
i |Di = 0]
1− p .

Using the previous lemma, we can now approximate the confidence level of ˆWW :
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Pr(| ˆ∆Y
WW −∆Y

TT | ≤ ε) = Pr(−ε ≤ ˆ∆Y
WW −∆Y

TT ≤ ε)

= Pr

− ε

1√
N

√
V[Y 1

i
|Di=1]

Pr(Di=1) + V[Y 0
i
|Di=0]

1−Pr(Di=1)

≤
ˆ∆Y
WW −∆Y

TT

1√
N

√
V[Y 1

i
|Di=1]

Pr(Di=1) + V[Y 0
i
|Di=0]

1−Pr(Di=1)

≤ ε

1√
N

√
V[Y 1

i
|Di=1]

Pr(Di=1) + V[Y 0
i
|Di=0]

1−Pr(Di=1)


≈ Φ

 ε

1√
N

√
V[Y 1

i
|Di=1]

Pr(Di=1) + V[Y 0
i
|Di=0]

1−Pr(Di=1)

− Φ

− ε

1√
N

√
V[Y 1

i
|Di=1]

Pr(Di=1) + V[Y 0
i
|Di=0]

1−Pr(Di=1)


= Φ

 ε

1√
N

√
V[Y 1

i
|Di=1]

Pr(Di=1) + V[Y 0
i
|Di=0]

1−Pr(Di=1)

− 1 + Φ

 ε

1√
N

√
V[Y 1

i
|Di=1]

Pr(Di=1) + V[Y 0
i
|Di=0]

1−Pr(Di=1)


= 2Φ

 ε

1√
N

√
V[Y 1

i
|Di=1]

Pr(Di=1) + V[Y 0
i
|Di=0]

1−Pr(Di=1)

− 1.

As a consequence,

δ ≈ 2Φ

 ε

1√
N

√
V[Y 1

i
|Di=1]

Pr(Di=1) + V[Y 0
i
|Di=0]

1−Pr(Di=1)

− 1.

Hence the result.

A.2 Proofs of results in Chapter 3
A.2.1 Proof of Theorem 3.9
In order to prove the theorem, it is going to be very helpful to prove the following
lemma:

Lemma A.6 (Unconfounded Types). Under Assumptions 3.9 and 3.10, the
types Ti are independent of the allocation of the treatment:

(Y 1,1
i , Y 0,1

i , Y 0,0
i , Y 1,0

i , Ti) ⊥⊥ Ri|Ei = 1.

Proof. Lemma 4.2 in Dawid (1979) shows that if X ⊥⊥ Y |Z and U is a function
of X then U ⊥⊥ Y |Z. The fact that Ti is a function of (D1

i , D
0
i ) proves the

result.

https://www.jstor.org/stable/2984718
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The four sets defined by Ti are a partition of the sample space. As a consequence,
we have (ommitting the conditioning on Ei = 1 all along for simplicity):

E[Yi|Ri = 1] = E[Yi|Ti = a,Ri = 1] Pr(Ti = a|Ri = 1)
+ E[Yi|Ti = c,Ri = 1] Pr(Ti = c|Ri = 1)
+ E[Yi|Ti = d,Ri = 1] Pr(Ti = d|Ri = 1)
+ E[Yi|Ti = n,Ri = 1] Pr(Ti = n|Ri = 1)

E[Yi|Ri = 0] = E[Yi|Ti = a,Ri = 0] Pr(Ti = a|Ri = 0)
+ E[Yi|Ti = c,Ri = 0] Pr(Ti = c|Ri = 0)
+ E[Yi|Ti = d,Ri = 0] Pr(Ti = d|Ri = 0)
+ E[Yi|Ti = n,Ri = 0] Pr(Ti = n|Ri = 0).

Let’s look at all these terms in turn:

E[Yi|Ti = a,Ri = 1] = E[Y 1,1
i DiRi + Y 1,0

i Di(1−Ri) + Y 0,1
i (1−Di)Ri + Y 0,0

i (1−Di)(1−Ri)|Ti = a,Ri = 1]
= E[Y 1,1

i (D1
iRi +D0

i (1−Ri))Ri + Y 0,1
i (1− (D1

iRi +D0
i (1−Ri)))Ri|Ti = a,Ri = 1]

= E[Y 1,1
i D1

iR
2
i + Y 0,1

i (1−D1
iRi)Ri|D1

i = D0
i = 1, Ri = 1]

= E[Y 1,1
i |Ti = a,Ri = 1]

= E[Y 1,1
i |Ti = a],

where the first equality uses Assumption 3.9, the second equality uses the fact that
Ri = 1 in the conditional expectation and Assumption 3.9, the third equality uses
the fact that Ri = 1, the fourth equality uses the fact that Ti = a⇔ D1

i = D0
i = 1

and the last equality uses Lemma A.6.

Using a similar reasoning, we have:

E[Yi|Ti = c,Ri = 1] = E[Y 1,1
i |Ti = c]

E[Yi|Ti = d,Ri = 1] = E[Y 0,1
i |Ti = d]

E[Yi|Ti = n,Ri = 1] = E[Y 0,1
i |Ti = n]

E[Yi|Ti = a,Ri = 0] = E[Y 1,0
i |Ti = c]

E[Yi|Ti = c,Ri = 0] = E[Y 0,0
i |Ti = c]

E[Yi|Ti = d,Ri = 0] = E[Y 1,0
i |Ti = d]

E[Yi|Ti = n,Ri = 0] = E[Y 0,0
i |Ti = n].
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Also, Lemma A.6 implies that Pr(Ti = a|Ri) = Pr(Ti = a), and the same is true
for all other types. As a consequence, we have:

E[Yi|Ri = 1] = E[Y 1,1
i |Ti = a] Pr(Ti = a)

+ E[Y 1,1
i |Ti = c] Pr(Ti = c)

+ E[Y 0,1
i |Ti = d] Pr(Ti = d)

+ E[Y 0,1
i |Ti = n] Pr(Ti = n)

E[Yi|Ri = 0] = E[Y 1,0
i |Ti = a] Pr(Ti = a)

+ E[Y 0,0
i |Ti = c] Pr(Ti = c)

+ E[Y 1,0
i |Ti = d] Pr(Ti = d)

+ E[Y 0,0
i |Ti = n] Pr(Ti = n).

And thus:

E[Yi|Ri = 1]− E[Yi|Ri = 0] = (E[Y 1,1
i |Ti = a]− E[Y 1,0

i |Ti = a]) Pr(Ti = a)
+ (E[Y 1,1

i |Ti = c]− E[Y 0,0
i |Ti = c]) Pr(Ti = c)

− (E[Y 1,0
i |Ti = d]− E[Y 0,1

i |Ti = d]) Pr(Ti = d)
+ (E[Y 0,1

i |Ti = n]− E[Y 0,0
i |Ti = n]) Pr(Ti = n).

Using Assumption 3.11, we have:

E[Yi|Ri = 1]− E[Yi|Ri = 0] = (E[Y 1
i |Ti = a]− E[Y 1

i |Ti = a]) Pr(Ti = a)
+ (E[Y 1

i |Ti = c]− E[Y 0
i |Ti = c]) Pr(Ti = c)

− (E[Y 1
i |Ti = d]− E[Y 0

i |Ti = d]) Pr(Ti = d)
+ (E[Y 0

i |Ti = n]− E[Y 0
i |Ti = n]) Pr(Ti = n)

= E[Y 1
i − Y 0

i |Ti = c] Pr(Ti = c)
− E[Y 1

i − Y 0
i |Ti = d] Pr(Ti = d).

Under Assumption 3.13, we have:

E[Yi|Ri = 1]− E[Yi|Ri = 0] = E[Y 1
i − Y 0

i |Ti = c] Pr(Ti = c)
= ∆Y

LATE Pr(Ti = c).

We also have:



A.2. PROOFS OF RESULTS IN CHAPTER 3 379

Pr(Di = 1|Ri = 1) = Pr(D1
i = 1|Ri = 1)

= Pr(D1
i = 1 ∩ (D0

i = 1 ∪D0
i = 0)|Ri = 1)

= Pr(D1
i = 1 ∩D0

i = 1 ∪D1
i = 1 ∩D0

i = 0|Ri = 1)
= Pr(D1

i = D0
i = 1 ∪D1

i −D0
i = 0|Ri = 1)

= Pr(Ti = a ∪ Ti = c|Ri = 1)
= Pr(Ti = a|Ri = 1) + Pr(Ti = c|Ri = 1)
= Pr(Ti = a) + Pr(Ti = c),

where the first equality follows from Assumption 3.9 and the fact that Di =
RiD

1
i + (1−Ri)D0

i , so that Di|Ri = 1 = D1
i . The second equality follows from

the fact that
{
D0
i = 1, D0

i = 0
}
is a partition of the sample space. The third

equality follows from usual rules of logic and the fourth equality from the fact
that D1

i and D0
i can only take values zero and one. The fifth equality follows

from the definition of Ti. The sixth equaity follows from the rule of addition in
probability and the fact that Ti = a and Ti = c are disjoint. The final equality
follows from Lemma A.6.

Using a similar reasoning, we have:

Pr(Di = 1|Ri = 0) = Pr(Ti = a) + Pr(Ti = d).

As a consequence, under Assumption 3.13, we have:

Pr(Di = 1|Ri = 1)− Pr(Di = 1|Ri = 0) = Pr(Ti = c).

Using Assumption 3.12 proves the result.

A.2.2 Proof of Theorem 3.15
In matrix notation, we have:

 Y1
...
YN


︸ ︷︷ ︸

Y

=

 1 D1
...

...
1 DN


︸ ︷︷ ︸

X

(
α
β

)
︸ ︷︷ ︸

Θ

+

 U1
...
UN


︸ ︷︷ ︸

U

and
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 D1
...

DN

 =

 1 R1
...

...
1 RN


︸ ︷︷ ︸

R

(
γ
τ

)
+

 V1
...
VN



The IV estimator is:

Θ̂IV = (R′X)−1R′Y

If there is at least one observation with Ri = 1 and Di = 1, R′X is invertible
(its determinant is non null) and we have (ommitting the summation index for
simplicity):

(R′X)−1 =
(

N
∑
Di∑

Ri
∑
DiRi

)−1

= 1
N
∑
DiRi −

∑
Di

∑
Ri

( ∑
DiRi −

∑
Di

−
∑
Ri N

)

Since:

R′Y =
( ∑

Yi∑
YiRi

)
,

we have:

Θ̂IV =


∑

Yi
∑

DiRi−
∑

Di
∑

YiRi

N
∑

DiRi−
∑

DiRi

N
∑

YiRi−
∑

Ri
∑

Yi

N
∑

DiRi−
∑

DiRi



As a consequence, β̂IV is equal to the ratio of two OLS estimators (Yi on Ri
and a constant and Di on the same regressors) (see the proof of Lemma A.3 in
section A.1.2, just after “Using D2

i = Di”). We can use Lemma A.3 stating that
the OLS estimator is the WW estimator to prove the result.
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A.2.3 Proof of Theorem 3.16
In order to derive the asymptotic distribution of the Wald estimator, I first use
Theorem 3.15 which implies that the asymptotic distribution of Wald is the
same as that of β̂IV . Now, I’m going to derive the asymptotic distribution of
the IV estimator.

Lemma A.7 (Asymptotic Distribution of the IV Estimator). Under Indepen-
dence and Validity of the Instrument, Exclusion Restriction and Full Rank, we
have:

√
N(Θ̂IV −Θ) d→ N

(
0
0 , (σ−1

RX)′Vruσ
−1
RX

)
,

with

σ−1
RX =

(
E[DiRi] −Pr(Di = 1)

−Pr(Ri = 1) 1

)
(Pr(Di = 1|Ri = 1)− Pr(Di = 1|Ri = 0)) Pr(Ri = 1)(1− Pr(Ri = 1))

Vru = E[U2
i

(
1 Ri
Ri Ri

)
]

Proof.
√
N(Θ̂IV −Θ) =

√
N((R′X)−1R′Y −Θ)

=
√
N((R′X)−1R′(XΘ + U)−Θ)

=
√
N((R′X)−1R′XΘ + (X ′X)−1X ′U)−Θ)

=
√
N(R′X)−1R′U

= N(R′X)−1
√
N

N
R′U

Using Slutsky’s Theorem, we have:

√
N(Θ̂IV −Θ) d→ σ−1

RXru,

where σ−1
RX is a matrix of constants and ru is a random variable.

We know that plimN(R′X)−1 = σ−1
RX . So:

N(R′X)−1 = N

N
∑
DiRi −

∑
Di

∑
Ri

( ∑
DiRi −

∑
Di

−
∑
Ri N

)

= 1∑
DiRi

N −
∑

Di

N

∑
Ri

N

 ∑
DiRi

N −
∑

Di

N

−
∑

Ri

N 1


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DiRi

N −
∑

Di

N

∑
Ri

N is equal to the numerator of the OLS coefficient of a
regression of Di on Ri and a constant (Proof of Lemma 3 in Lecture 0). As a
consequence of Lemma 3 in Lecture 0, it can be written as the With/Without
estimator multiplied by the denominator of the OLS estimator, which is simply
the variance of Ri.

Let’s turn to
√
N
N R′U

d→ xu:

√
N

N
R′U =

√
N

( 1
N

∑i=1
N Ui

1
N

∑i=1
N RiUi

)

We know that, under Validity of Randomization, both random variables have
mean zero:

E[Ui] = E[Ui|Ri = 1] Pr(Ri = 1) + E[Ui|Ri = 0] Pr(Ri = 0) = 0
E[UiRi] = E[Ui|Ri = 1] Pr(Ri = 1) = 0

Their covariance matrix Vru can be computed as follows:

Vru = E[
(

Ui
UiRi

)(
Ui UiRi

)
]− E[

(
Ui
UiRi

)
]E[
(
Ui UiRi

)
]

= E[
(

U2
i U2

i Ri
Ui2Ri U2

i R
2
i

)
] = E[U2

i

(
1 Ri
Ri R2

i

)
] = E[U2

i

(
1 Ri
Ri Ri

)
]

Using the Vector CLT, we have that
√
N
N R′U

d→ N
(

0
0 ,Vru

)
. Using Slutsky’s

theorem and the LLN gives the result.

From Lemma A.7, we know that
√
N(β̂IV − β) d→ N (0, σ2

β), where σ2
β is the

lower diagonal term of (σ−1
RX)′Vruσ

−1
RX . Using the convention pR = Pr(Ri = 1),

pD = Pr(Di = 1), pD1 = Pr(Di = 1|Ri = 1), pD0 = Pr(Di = 1|Ri = 0) and
pDR = E[DiRi], we have:



A.2. PROOFS OF RESULTS IN CHAPTER 3 383

(σ−1
RX)′Vruσ

−1
RX

= 1
((pD1 − pD0 )pR(1− pR))2

(
pDR −pR
−pD 1

)
E[U2

i

(
1 Ri
Ri Ri

)
]
(
pDR −pD
−pR 1

)
= 1

((pD1 − pD0 )pR(1− pR))2

(
pDRE[U2

i ]− pRE[U2
i Ri] E[U2

i Ri](pDR − pR)
E[U2

i Ri]− pDE[U2
i ] E[U2

i Ri](1− pD)

)(
pDR −pD
−pR 1

)

=

(
pDR(pDRE[U2

i ]− pRE[U2
i Ri])− pRE[U2

i Ri](pDR − pR) E[U2
i Ri](pDR − pR)− pD(pDRE[U2

i ]− pRE[U2
i Ri])

pDR(E[U2
i Ri]− pDE[U2

i ])− pRE[U2
i Ri](1− pD) E[U2

i Ri](1− pD)− pD(E[U2
i Ri]− pDE[U2

i ])

)
((pD1 − pD0 )pR(1− pR))2

As a consequence:

σ2
β = E[U2

i Ri](1− pD)− pD(E[U2
i Ri]− pDE[U2

i ])
((pD1 − pD0 )pR(1− pR))2

= (pD)2E[U2
i ] + (1− 2pD)E[U2

i Ri]
((pD1 − pD0 )pR(1− pR))2

= (pD)2(E[U2
i |Ri = 1]pR + E[U2

i |Ri = 0](1− pR)) + (1− 2pD)E[U2
i |Ri = 1]pR

((pD1 − pD0 )pR(1− pR))2

= (pD)2E[U2
i |Ri = 0](1− pR) + (1− 2pD + (pD)2)E[U2

i |Ri = 1]pR

((pD1 − pD0 )pR(1− pR))2

= (pD)2E[U2
i |Ri = 0](1− pR) + (1− pD)2E[U2

i |Ri = 1]pR

((pD1 − pD0 )pR(1− pR))2

= 1
(pD1 − pD0 )2

[(
pD

pR

)2 E[U2
i |Ri = 0]
1− pR +

(
1− pD

1− pR

)2 E[U2
i |Ri = 1]
pR

]
.

Note that, under monotonicity, pC = pD1 − pD0 and:

E[U2
i |Ri = 1] = pATV[Y 1

i |Ti = AT ] + pCV[Y 1
i |Ti = C] + pNTV[Y 0

i |Ti = NT ]
E[U2

i |Ri = 0] = pATV[Y 1
i |Ti = AT ] + pCV[Y 0

i |Ti = C] + pNTV[Y 0
i |Ti = NT ].

The final result comes from the fact that:
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1
(pC)2

[(
pD

pR

)2 1
1− pR +

(
1− pD

1− pR

)2 1
pR

]

= (pD)2(1− pR) + (1− pD)2pR

(pCpR(1− pR))2

= (pD)2 − (pD)2pR + pR − 2pDpR + (pD)2pR

(pCpR(1− pR))2

= (pD)2 + pR − 2pDpR

(pCpR(1− pR))2

= (pD − pR)2 + pR − (pR)2

(pCpR(1− pR))2

= (pD − pR)2 + pR(1− pR)
(pCpR(1− pR))2

= (pAT + pCpR − pR)2 + pR(1− pR)
(pCpR(1− pR))2

= (pAT + (1− pAT − pNT )pR − pR)2 + pR(1− pR)
(pCpR(1− pR))2

= (pAT + (1− pAT − pNT )pR − pR)2 + pR(1− pR)
(pCpR(1− pR))2

= (pAT + pR − pAT pR − pNT pR − pR)2 + pR(1− pR)
(pCpR(1− pR))2

= (pAT (1− pR)− pNT pR)2 + pR(1− pR)
(pCpR(1− pR))2 ,

where the seventh equality uses the fact that pC + pAT + pNT = 1.

A.3 Proofs of results in Chapter 4

A.3.1 Proof of Theorem 4.5

Let us start with the proof that β̂FD = ∆̂Y
DID. Using Lemma A.3, we have

that β̂FD = ∆̂YA−YB
WW . From there, since

∑N
i=1(Yi,A − Yi,B)Di =

∑N
i=1 Yi,ADi −∑N

i=1 Yi,BDi, we have β̂FD = ∆̂Y
DID.

In order to prove the result for the OLS DID estimator, it is convenient to write
the model in matrix form (where we rank all the observations from the first
period in the first lines of each matrix and vector):
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

Y1,B
...

YN,B
Y1,A
...

YN,A


︸ ︷︷ ︸

Y

=



1 D1 T1,B D1T1,B
...

...
...

...
1 DN TN,B DNTN,B
1 D1 T1,A D1T1,A
...

...
...

...
1 DN TN,A DNTN,A


︸ ︷︷ ︸

X


α
µ
δ
β


︸ ︷︷ ︸

Θ

+



ε1,B
...

εN,B
ε1,A
...

εN,A


︸ ︷︷ ︸

ε

Now, using the fact that Ti,B = 0 and Ti,A = 1, ∀i, we can write matrix X as
follows:

X =



1 D1 0 0
...

...
...

...
1 DN 0 0
1 D1 1 D1
...

...
...

...
1 DN 1 DN


Doing some matrix multiplication and factoring N , we have:

X ′X = N


2 2D̄ 1 D̄

2D̄ 2D̄ D̄ D̄
1 D̄ 1 D̄
D̄ D̄ D̄ D̄


︸ ︷︷ ︸

x′x

with D̄ = 1
N

∑N
i=1Di, and using the fact that D2

i = Di since Di ∈ {0, 1}. Using
results on the inverse of a 4 by 4 matrix presented here and collecting terms
patiently, we find that the determinant of xx is equal to:

det(x′x) = D̄2(1− D̄)2

and its adjugate is equal to:

x̃′x = D̄(1− D̄)


D̄ −D̄ −D̄ D̄
−D̄ 1 D̄ −1
−D̄ D̄ 2D̄ −2D̄
D̄ −1 −2D̄ 2



https://semath.info/src/inverse-cofactor-ex4.html
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We also have that:

X ′Y = N


ȲB + ȲA

D̄(Ȳ 1
B + Ȳ 1

A)
ȲA
D̄Ȳ 1

A



with Ȳt = 1
N

∑N
i=1 Yi,t and Ȳ 1

t = 1∑N

i=1
Di

∑N
i=1DiYi,t and Ȳ 0

t =
1∑N

i=1
(1−Di)

∑N
i=1(1 − Di)Yi,t and using the fact that

∑N
i=1DiYi,t = ND̄Ȳ 1

t .

Using the fact that Yi,t = DiYi,t + (1−Di)Yi,t, we have:

Ȳt =
∑N
i=1Di

N

∑N
i=1DiYi,t∑N
i=1Di

+
∑N
i=1(1−Di)

N

∑N
i=1(1−Di)Yi,t∑N
i=1(1−Di)

= D̄Ȳ 1
t + (1− D̄)Ȳ 0

t .

We thus have:

X ′Y = N



Ȳ 0
B + Ȳ 0

A + D̄(Ȳ 1
B − Ȳ 0

B + Ȳ 1
A − Ȳ 0

A)︸ ︷︷ ︸
A

D̄(Ȳ 1
B + Ȳ 1

A)︸ ︷︷ ︸
B

Ȳ 0
A + D̄(Ȳ 1

A − Ȳ 0
A)︸ ︷︷ ︸

C
D̄Ȳ 1

A︸ ︷︷ ︸
D



Using the fact that (X ′X)−1 = (Nx′x)−1 = 1
N (x′x)−1 = 1

N

˜x′x
det(x′x) , we have:

Θ̂OLS = (X ′X)−1X ′Y

= 1
D̄(1− D̄)


D̄(A−B−C + D)
−D̄A + B + D̄C−D
D̄(−A + B + 2C− 2D)
D̄A−B− 2D̄C + 2D


Let’s take each term in turn:



A.3. PROOFS OF RESULTS IN CHAPTER 4 387

α̂OLS = 1
1− D̄

(
Ȳ 0
B + Ȳ 0

A + D̄(Ȳ 1
B − Ȳ 0

B + Ȳ 1
A − Ȳ 0

A)− D̄(Ȳ 1
B + Ȳ 1

A)− (Ȳ 0
A + D̄(Ȳ 1

A − Ȳ 0
A)) + D̄Ȳ 1

A

)
= 1

1− D̄
(
Ȳ 0
B(1− D̄) + Ȳ 0

A(1− D̄ − 1 + D̄) + Ȳ 1
B(D̄ − D̄) + Ȳ 1

A(D̄ − D̄ − D̄ + D̄)
)

= Ȳ 0
B

µ̂OLS = 1
D̄(1− D̄)

(
−D̄(Ȳ 0

B + Ȳ 0
A + D̄(Ȳ 1

B − Ȳ 0
B + Ȳ 1

A − Ȳ 0
A)) + D̄(Ȳ 1

B + Ȳ 1
A) + D̄(Ȳ 0

A + D̄(Ȳ 1
A − Ȳ 0

A))− D̄Ȳ 1
A

)
= 1

1− D̄
(
−Ȳ 0

B(1− D̄) + Ȳ 0
A(−1 + D̄ + 1− D̄) + Ȳ 1

B(1− D̄) + Ȳ 1
A(−D̄ + 1 + D̄ − 1)

)
= Ȳ 1

B − Ȳ 0
B

δ̂OLS = 1
1− D̄

(
−(Ȳ 0

B + Ȳ 0
A + D̄(Ȳ 1

B − Ȳ 0
B + Ȳ 1

A − Ȳ 0
A)) + (Ȳ 1

B + Ȳ 1
A) + 2(Ȳ 0

A + D̄(Ȳ 1
A − Ȳ 0

A))− 2D̄Ȳ 1
A

)
= 1

1− D̄
(
−Ȳ 0

B(1− D̄) + Ȳ 0
A(2(1− D̄)− (1− D̄)) + Ȳ 1

B(D̄ − D̄) + Ȳ 1
A(D̄ − D̄ + 2D̄ − 2D̄)

)
= Ȳ 0

A − Ȳ 0
B

β̂OLS = 1
D̄(1− D̄)

(
D̄(Ȳ 0

B + Ȳ 0
A + D̄(Ȳ 1

B − Ȳ 0
B + Ȳ 1

A − Ȳ 0
A))− D̄(Ȳ 1

B + Ȳ 1
A)− 2D̄(Ȳ 0

A + D̄(Ȳ 1
A − Ȳ 0

A)) + 2D̄Ȳ 1
A

)
= 1

1− D̄
(
Ȳ 0
B(1− D̄) + Ȳ 0

A((1− D̄)− 2(1− D̄)) + Ȳ 1
B(D̄ − 1) + Ȳ 1

A(D̄ − 1− 2D̄ + 2)
)

= Ȳ 1
A − Ȳ 1

B − (Ȳ 0
A − Ȳ 0

B)

This last results proves that β̂OLS = ∆̂Y
DID.

For the within estimator, it can be written in matrix form as follows:



Y1,B − Ȳ1
...

YN,B − ȲN
Y1,A − Ȳ1

...
YN,A − ȲN


︸ ︷︷ ︸

YW

=



1 0 −D̄1
...

...
...

1 0 −D̄N

1 1 D1 − D̄1
...

...
...

1 1 DN − D̄N


︸ ︷︷ ︸

XW

 αW

δW

βW


︸ ︷︷ ︸

ΘW

+



εW1,B
...

εWN,B
εW1,A
...

εWN,A


︸ ︷︷ ︸

εW
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We have:

XW ′XW = N

 2 1 0
1 1 D̄

2
0 D̄

2
D̄
2


︸ ︷︷ ︸

xW ′xW

This is because:

XW ′XW =

 2N N −
∑N
i=1 D̄i +

∑N
i=1(Di − D̄i)

N N
∑N
i=1(Di − D̄i)

−
∑N
i=1 D̄i +

∑N
i=1(Di − D̄i)

∑N
i=1(Di − D̄i)

∑N
i=1 D̄

2
i +

∑N
i=1(Di − D̄i)2


and:

N∑
i=1

D̄i = 1
2

N∑
i=1

(Di,B +Di,A)

= 1
2

N∑
i=1

Di

= 1
2ND̄

N∑
i=1

(Di − D̄i) = ND̄ − 1
2ND̄

= 1
2ND̄

N∑
i=1

D̄2
i = 1

4

N∑
i=1

(Di,B +Di,A)2

= 1
4

N∑
i=1

D2
i

= 1
4ND̄

N∑
i=1

(Di − D̄i)2 =
N∑
i=1

(Di −
1
2Di)2

= 1
4ND̄
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Now we can use the results here and here to compute the inverse of the xW ′xW
matrix. Let us first compute the determinant:

det(xW ′xW ) = 2(D̄2 −
D̄2

4 )− D̄

2
= 1

2D̄(1− D̄).

And then the adjugate:

˜xW
′
xW =

 D̄
2 (1− D̄

2 ) − D̄2
D̄
2

− D̄2 D̄ −D̄
D̄
2 −D̄ 1



Let us now examine XW ′YW :

XW ′YW =


∑N
i=1(Yi,B − Ȳi) +

∑N
i=1(Yi,A − Ȳi)∑N

i=1(Yi,A − Ȳi)
−
∑N
i=1 D̄i(Yi,B − Ȳi) +

∑N
i=1(Di − D̄i)(Yi,A − Ȳi)



We have:

https://study.com/academy/lesson/finding-the-inverse-of-a-3x3-matrix.html
https://metric.ma.ic.ac.uk/metric_public/matrices/inverses/inverses2.html
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N∑
i=1

(Yi,B − Ȳi) = NȲB −
1
2N(ȲB + ȲA)

= 1
2N(ȲB − ȲA)

N∑
i=1

(Yi,A − Ȳi) = 1
2N(ȲA − ȲB)

N∑
i=1

D̄i(Yi,B − Ȳi) =
N∑
i=1

1
2Di(Yi,B −

1
2

N∑
i=1

(Yi,B + Yi,A))

=
N∑
i=1

1
2Di

1
2(Yi,B − Yi,A)

= 1
4

N∑
i=1

Di(Yi,B − Yi,A)

= 1
4ND̄(Ȳ 1

B − Ȳ 1
A)

N∑
i=1

(Di − D̄i)(Yi,A − Ȳi) =
N∑
i=1

(Di −
1
2Di)(Yi,A −

1
2

N∑
i=1

(Yi,B + Yi,A))

= 1
4

N∑
i=1

Di(Yi,A − Yi,B)

= 1
4ND̄(Ȳ 1

A − Ȳ 1
B).

So, we have:

(XW ′XW )−1XW ′YW = 2
ND̄(1− D̄)

 D̄
2 (1− D̄

2 ) − D̄2
D̄
2

− D̄2 D̄ −D̄
D̄
2 −D̄ 1


 0

N
2 (ȲA − ȲB)

N
2 D̄(Ȳ 1

A − Ȳ 1
B)


We thus have:

β̂W = 2
ND̄(1− D̄)

(
−D̄N2 (ȲA − ȲB) + N

2 D̄(Ȳ 1
A − Ȳ 1

B)
)

= 1
1− D̄

(
Ȳ 1
A − Ȳ 1

B − (ȲA − ȲB)
)
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Using the fact that Ȳt = D̄Ȳ 1
t + (1− D̄)Ȳ 0

t , we have ȲA − ȲB = (1− D̄)(Ȳ 0
A −

Ȳ 0
B) + D̄(Ȳ 1

A − Ȳ 1
B).

As a consequence:

β̂W = 1− D̄
1− D̄

(
Ȳ 1
A − Ȳ 1

B − (Ȳ 0
A − Ȳ 0

B)
)

= Ȳ 1
A − Ȳ 1

B − (Ȳ 0
A − Ȳ 0

B),

which proves that β̂W = ∆̂Y
DID.

Now for β̂LSDV , the estimator can be written in matrix form as follows:



Y1,B
...

YN,B
Y1,A
...

YN,A


︸ ︷︷ ︸

Y

=



1 0 . . . 0 1 0 D1,B
0 1 . . . 0 1 0 D2,B
...

...
. . .

...
...

...
...

0 0 . . . 1 1 0 DN,B

1 0 . . . 0 0 1 D1,A
0 1 . . . 0 0 1 D2,A
...

...
. . .

...
...

...
...

0 0 . . . 1 0 1 DN,A


︸ ︷︷ ︸

XLSDV



µLSDV1
...

µLSDVN

δLSDVB

δLSDVA

βLSDV


︸ ︷︷ ︸

ΘLSDV

+



εLSDV1,B
...

εLSDVN,B

εLSDV1,A
...

εLSDVN,A


.

︸ ︷︷ ︸
εLSDV

In order to prove the result, it is going to be very convenient to use Frish-Waugh-
Lovell Theorem. It can be stated as follows:

Theorem A.1 (Frish-Waugh-Lovell). The coefficients on a set of variables X2
estimated by OLS in a linear regression with another set of control variables X1
is equal to the coefficients on the same set of variables estimated by OLS in a
linear model where the outcome variable is the residual of regressing Y on X1
by OLS and the explanatory variables are the residuals of regressing X2 on X1.
More formally: β̂OLS2 = β̂

OLS(MX1)
2 where:

Y = X1β1 +X2β2 + ε

M1Y = M1X2β2 + ε∗

M1 = I −X1(X ′1X1)−1X ′1.

Proof. See Section 8.2.2 here.

M1 is called the prediction or the residualizing matrix.

In our case, let us call XLSDV
µ the first N columns of XLSDV . XLSDV

µ is going
to play the role of X1 in Theorem A.1. Let us call XLSDV

δ,D the matrix made

https://bookdown.org/ts_robinson1994/10_fundamental_theorems_for_econometrics/frisch.html
https://bookdown.org/ts_robinson1994/10_fundamental_theorems_for_econometrics/frisch.html
https://bookdown.org/ts_robinson1994/10_fundamental_theorems_for_econometrics/frisch.html
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of the last three columns of XLSDV . XLSDV
δ,D is going to play the role of X2 in

Theorem A.1.

Let us first note that XLSDV
µ

′
XLSDV
µ = 2IN , where IN is the identity matrix

of dimension N . As a consequence, (XLSDV
µ

′
XLSDV
µ )−1 = 1

2IN . Now, let us
compute XLSDV

µ
′
Y :

XLSDV
µ

′
Y =

 Y1,B + Y1,A
...

YN,B + YN,A

 .

As a consequence, we have:

MLSDV
µ Y = Y −XLSDV

µ (XLSDV
µ

′
XLSDV
µ )−1XLSDV

µ

′
Y

= Y − 1
2X

LSDV
µ IN

 Y1,B + Y1,A
...

YN,B + YN,A



=



Y1,B − 1
2 (Y1,B + Y1,A)

...
YN,B − 1

2 (YN,B + YN,A)
Y1,A − 1

2 (Y1,B + Y1,A)
...

YN,A − 1
2 (YN,B + YN,A)


.

And finally:

MLSDV
µ XLSDV

δ,D = XLSDV
δ,D −XLSDV

µ (XLSDV
µ

′
XLSDV
µ )−1XLSDV

µ

′
XLSDV
δ,D

=



1
2 − 1

2 D1,B − 1
2 (D1,B +D1,A)

...
...

...
1
2 − 1

2 DN,B − 1
2 (D1,B +D1,A)

− 1
2

1
2 D1,A − 1

2 (D1,B +D1,A)
...

...
...

− 1
2

1
2 DN,A − 1

2 (D1,B +D1,A)


.

Using Theorem A.1, we can rewrite the LSDV version of the TWFE model as
follows:
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MLSDV
µ Y = MLSDV

µ XLSDV
δ,D

 δLSDVB

δLSDVA

βLSDV

+MLSDV
µ εLSDV

In a more compact notation, we have, ∀i ∈ [1, N ] and ∀t ∈ {B,A}:

Yi,t − Ȳi = 1
2(δLSDVA − δLSDVB )(1[t = A]− 1[t = B]) + βLSDV (Di,t − D̄i) + εLSDVi,t − ε̄LSDVi ,

which we can rewrite, for simplicity, as:

Yi,t − Ȳi = δ̃LSDVt + βLSDV (Di,t − D̄i) + εLSDVi,t − ε̄LSDVi ,

with δ̃LSDVA = −δ̃LSDVB = δ̄LSDV and δ̄LSDV = 1
2 (δLSDVA − δLSDVB ).

In matrix form, we can thus rewrite the LSDV model transformed by the
application of the Frich-Waugh theorem as follows:



Y1,B − Ȳ1
...

YN,B − ȲN
Y1,A − Ȳ1

...
YN,A − ȲN


︸ ︷︷ ︸

Y LSDVr

=



1 0 −D̄1
...

...
...

1 0 −D̄N

0 1 D1 − D̄1
...

...
...

0 1 DN − D̄N


︸ ︷︷ ︸

XLSDVr

 δ̃LSDVB

δ̃LSDVA

βLSDV


︸ ︷︷ ︸

ΘLSDVr

+



εLSDV1,B − ε̄LSDV1
...

εLSDVN,B − ε̄LSDVN

εLSDV1,A − ε̄LSDV1
...

εLSDVN,A − ε̄LSDVN


︸ ︷︷ ︸

εLSDVr

This is very close to the formula for the Within estimator we have seen above.
The only difference is that we have two time fixed effects instead of a constant
and the After time fixed effect. We are going to solve for the estimator in a
very similar way. First:

XLSDV
r

′
XLSDV
r = N

 1 0 − D̄2
0 1 D̄

2
− D̄2

D̄
2

D̄
2


︸ ︷︷ ︸

xLSDVr
′xLSDVr

The determinant of xLSDVr
′
xLSDVr is:
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det(xLSDVr

′
xLSDVr ) = 1

2D̄(1− D̄)

and its adjoint matrix is:

˜xLSDVr
′
xLSDVr =

 1
2D̄(1− 1

2D̄) − 1
4D̄

2 1
2D̄

− 1
4D̄

2 1
2D̄(1− 1

2D̄) − 1
2D̄

1
2D̄ − 1

2D̄ 1

 .

Finally, we have:

XLSDV
r

′
Y LSDVr =


∑N
i=1(Yi,B − Ȳi)∑N
i=1(Yi,A − Ȳi)

−
∑N
i=1 D̄i(Yi,B − Ȳi) +

∑N
i=1(Di − D̄i)(Yi,A − Ȳi)


=

 − 1
2N(ȲA − ȲB)

1
2N(ȲA − ȲB)

1
2ND̄(Ȳ 1

A − Ȳ 1
B)



Using the fact that Θ̂LSDV
r = (XLSDV

r
′
XLSDV
r )−1XLSDV

r
′
Y LSDVr , we have:

β̂LSDV = 2
ND̄(1− D̄)

[
−D̄N2 (ȲA − ȲB) + D̄N

2 (Ȳ 1
A − Ȳ 1

B)
]

= 1
1− D̄

[
Ȳ 1
A − Ȳ 1

B − (1− D̄)(Ȳ 0
A − Ȳ 0

B)− D̄(Ȳ 1
A − Ȳ 1

B)
]

= 1
1− D̄

[
(1− D̄)(Ȳ 1

A − Ȳ 1
B)− (1− D̄)(Ȳ 0

A − Ȳ 0
B)
]

= Ȳ 1
A − Ȳ 1

B − (Ȳ 0
A − Ȳ 0

B).

The second equality uses the fact that ȲA− ȲB = (1−D̄)(Ȳ 0
A− Ȳ 0

B)+D̄(Ȳ 1
A− Ȳ 1

B).
This proves the result.

To Do: the AP and LC estimators

A.3.2 Proof of Theorem 4.7
The DID model in repeated cross sections can be written in the following matrix
form:
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

Y1,B
...

YNB ,B
Y1,A
...

YNA,A


︸ ︷︷ ︸

Y

=



1 DB
1 T1,B DB

1 T1,B
...

...
...

...
1 DB

NB
TNB ,B DB

NB
TNB ,B

1 DA
1 T1,A DA

1 T1,A
...

...
...

...
1 DA

NA
TNA,A DA

NA
TNA,A


︸ ︷︷ ︸

X


α
µ
δ
β


︸ ︷︷ ︸

Θ

+



ε1,B
...

εNB ,B
ε1,A
...

εNA,A


,

︸ ︷︷ ︸
ε

where DB
i and DA

i denote the actual treatment status in period A of individuals
observed in periods B and A respectively and NB and NA are the numbers of
units observed in periods B and A respectively.

Using the beginning of the proof of Lemma A.4, we know that:
√
N(Θ̂OLS−Θ) =

N(X ′X)−1
√
N
N X ′ε. Using Slutsky’s Theorem, we know that we can study both

terms separately (see the same proof of Lemma A.4). Let’s start with N(X ′X)−1.
Using the fact that Ti,B = 0 and Ti,A = 1, ∀i, we can write matrix X as follows:

X =



1 DB
1 0 0

...
...

...
...

1 DB
NB

0 0
1 DA

1 1 DA
1

...
...

...
...

1 DA
NA

1 DA
NA


Doing some matrix multiplication, we have:

X ′X = NA


k + 1 kD̄B + D̄A 1 D̄A

kD̄B + D̄A kD̄B + D̄A D̄A D̄A

1 D̄A 1 D̄A

D̄A D̄A D̄A D̄A


︸ ︷︷ ︸

x′x

with D̄t = 1
Nt

∑Nt
i=1D

t
i , k = NB

NA
, and using the fact that (Dt

i)2 = Dt
i since

Dt
i ∈ {0, 1}. Using results on the inverse of a 4 by 4 matrix presented here and

collecting terms patiently, we find that the determinant of x′x is equal to:

det(x′x) = k2πD̄2
A(1− D̄A)(1− πD̄A),

https://semath.info/src/inverse-cofactor-ex4.html
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with π = D̄B
D̄A

, and its adjugate is equal to:

x̃′x = kπD̄A(1− D̄A)


D̄A −D̄A −D̄A D̄A

−D̄A
1
π D̄A − 1

π

−D̄A D̄A D̄A
k+1−D̄A(kπ+1)

1−D̄A
−D̄A

k+1−D̄A(kπ+1)
1−D̄A

D̄A − 1
π −D̄A

k+1−D̄A(kπ+1)
1−D̄A

k 1−πD̄A
1−D̄A

+ 1
π


We finally have that NA(X ′X)−1 = 1

det(x′x) x̃
′x. Taking the plim with respect

to NA, we have that:

plimNA(X ′X)−1 = 1
kp(1− p)


p −p −p p
−p 1 p −1
−p p p(k + 1) −p(k + 1)
p −1 −p(k + 1) k + 1


The result comes from plimD̄B = plimD̄A = Pr(Di = 1) = p, according to the
Law of Large Numbers, and thus, using Slutsky’s Theorem, plimπ = 1.

Let us now derive the asymptotic distribution of
√
N
N X ′ε. In order to do that, we

need to know the coefficients of the OLS DID model in repeated cross sections
of different sizes. They probably are the same that with a panel, but we still
need to check. We have that:

X ′Y = NA


kȲB + ȲA

D̄A(kπȲ 1
B + Ȳ 1

A)
ȲA

D̄AȲ
1
A


Using the fact that Ȳt = D̄tȲ

1
t + (1− D̄t)Ȳ 0

t , we have that:

X ′Y = NA



kȲ 0
B + Ȳ 0

A + D̄A(kπ(Ȳ 1
B − Ȳ 0

B) + Ȳ 1
A − Ȳ 0

A)︸ ︷︷ ︸
A

D̄A(kπȲ 1
B + Ȳ 1

A)︸ ︷︷ ︸
B

Ȳ 0
A + D̄A(Ȳ 1

A − Ȳ 0
A)︸ ︷︷ ︸

C
D̄AȲ

1
A︸ ︷︷ ︸

D


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Using the fact that (X ′X)−1 = 1
NA

˜x′x
det(x′x) , we have:

Θ̂OLS = (X ′X)−1X ′Y

= 1
D̄Ak(1− πD̄A)


D̄A(A−B−C + D)
−D̄AA + B

π + D̄AC− D
π

D̄A(−A + B + k+1−D̄A(kπ+1)
1−D̄A

C− k+1−D̄A(kπ+1)
1−D̄A

D)
D̄AA− B

π −
k+1−D̄A(kπ+1)

1−D̄A
D̄AC + (k 1−πD̄A

1−D̄A
+ 1

π )D



Let’s take each term in turn:

α̂OLS = 1
k(1− πD̄A)

(
kȲ 0

B + Ȳ 0
A + D̄A(kπ(Ȳ 1

B − Ȳ 0
B) + Ȳ 1

A − Ȳ 0
A)− D̄A(kπȲ 1

B + Ȳ 1
A)

−Ȳ 0
A − D̄A(Ȳ 1

A − Ȳ 0
A) + D̄AȲ

1
A

)
= 1
k(1− πD̄A)

(
Ȳ 0
B(k − kπD̄A) + Ȳ 0

A(1− D̄A − 1 + D̄A) + Ȳ 1
B(kπD̄A − kπD̄A)+

Ȳ 1
A(D̄A − D̄A − D̄A + D̄A)

)
= Ȳ 0

Bk
1− πD̄A

k(1− πD̄A)
= Ȳ 0

B

µ̂OLS = 1
kD̄A(1− πD̄A)

(
−D̄A(kȲ 0

B + Ȳ 0
A + D̄A(kπ(Ȳ 1

B − Ȳ 0
B) + Ȳ 1

A − Ȳ 0
A))

+D̄A(kπȲ 1
B + Ȳ 1

A)
π

+ D̄A(Ȳ 0
A + D̄A(Ȳ 1

A − Ȳ 0
A))− D̄AȲ

1
A

π

)
= 1
kD̄A(1− πD̄A)

(
−D̄AkȲ

0
B(1− πD̄A)− Ȳ 0

AD̄A(1− D̄A − 1 + D̄A)

+D̄AkȲ
1
B(1− πD̄A) + Ȳ 1

A(−D̄2
A + D̄A

π
+ D̄2

A −
D̄A

π
)
)

= kD̄A(1− πD̄A)
kD̄A(1− πD̄A)

(Ȳ 1
B − Ȳ 0

B)

= Ȳ 1
B − Ȳ 0

B
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δ̂OLS = 1
k(1− πD̄A)

(
−(kȲ 0

B + Ȳ 0
A + D̄A(kπ(Ȳ 1

B − Ȳ 0
B) + Ȳ 1

A − Ȳ 0
A))

+ D̄A(kπȲ 1
B + Ȳ 1

A) + k + 1− D̄A(kπ + 1)
1− D̄A

(Ȳ 0
A + D̄A(Ȳ 1

A − Ȳ 0
A))

−k + 1− D̄A(kπ + 1)
1− D̄A

D̄AȲ
1
A

)
= 1
k(1− πD̄A)

(
−Ȳ 0

Bk(1− πD̄A)− Ȳ 0
A(1− D̄A − (k + 1− D̄A(kπ + 1)))

+Ȳ 1
B(−kπD̄A + kπD̄A) + Ȳ 1

A(−D̄A + D̄A + k + 1− D̄A(kπ + 1)
1− D̄A

(D̄A − D̄A))
)

= 1
k(1− πD̄A)

(
−Ȳ 0

Bk(1− πD̄A) + Ȳ 0
Ak(1− πD̄A)

)
= Ȳ 0

A − Ȳ 0
B

β̂OLS = 1
D̄Ak(1− πD̄A)

(
D̄A(kȲ 0

B + Ȳ 0
A + D̄A(kπ(Ȳ 1

B − Ȳ 0
B) + Ȳ 1

A − Ȳ 0
A))− D̄A(kπȲ 1

B + Ȳ 1
A)

π

−k + 1− D̄A(kπ + 1)
1− D̄A

D̄A(Ȳ 0
A + D̄A(Ȳ 1

A − Ȳ 0
A)) + (k 1− πD̄A

1− D̄A

+ 1
π

)D̄AȲ
1
A

)
= 1
D̄Ak(1− πD̄A)

(
Ȳ 0
BD̄Ak(1− πD̄A) + Ȳ 0

AD̄A(1− D̄A − (k + 1− D̄A(kπ + 1)))− Ȳ 1
BD̄Ak(1− πD̄A)

+Ȳ 1
AD̄A(D̄A −

1
π
− D̄A

k + 1− D̄A(kπ + 1)
1− D̄A

+ k
1− πD̄A

1− D̄A

+ 1
π

)
)

= 1
k(1− πD̄A)

(
−k(1− πD̄A)(Ȳ 1

B − Ȳ 0
B)− k(1− πD̄A)Ȳ 0

A + k(1− πD̄A)Ȳ 1
A

)
= Ȳ 1

A − Ȳ 0
A − (Ȳ 1

B − Ȳ 0
B).

So it is confirmed that OLS estimation of the DID model in repeated cross
sections of different sizes estimates the same parameters than in panel data.
Thanks to the Law of Large Numbers, we know that:

plimΘ̂OLS =


E[Y 0

i,B |Di = 0]
E[Y 0

i,B |Di = 1]− E[Y 0
i,B |Di = 1]

E[Y 0
i,A − Y 0

i,B |Di = 0]
E[Y 1

i,A − Y 0
i,B |Di = 1]− E[Y 0

i,A − Y 0
i,B |Di = 0]

 ,

where the plim is taken over N = NA +NB .
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In order to study more easily the DID model as estimated by OLS, we are going
to rewrite it as a pure cross sectional model:

Yj = α+ µDj + δTj + βDjTj + εj ,

where j = i when t = B and j = NB + i when t = A, Dj = Dt
i , Tj = Ti,t and

Yj = Yi,t. In that case, we are assuming that Ti is a random variable, whereas
in real life, the sample is stratified with respect to Ti. We will treat this case in
the stratification section. For now, assuming that time is sampled as a usual
random variable is a useful simplification.

From what we have proven above, we know that:

εj = Yj −
(
E[Y 0

j |Dj = 0, Tj = 0] +Dj(E[Y 0
j |Dj = 1, Tj = 0]− E[Y 0

j |Dj = 0, Tj = 0])
+ Tj(E[Y 0

j |Dj = 0, Tj = 1]− E[Y 0
j |Dj = 0, Tj = 0])

+DjTj(E[Y 1
j |Dj = 1, Tj = 1]− E[Y 0

j |Dj = 1, Tj = 0]
−(E[Y 0

j |Dj = 0, Tj = 1]− E[Y 0
j |Dj = 0, Tj = 0]))

)
With this notation, and N = NA +NB , we have:

√
N

N
X ′ε =

√
N


1
N

∑N
i=1 εj

1
N

∑N
i=1Djεj

1
N

∑N
i=1 Tjεj

1
N

∑N
i=1DjTjεj

 .

In order to be able to use the vector CLT in order to study the distribution of
these quantities, we need first to compute the expectation of these variables. Let
us first start with E[DjTjεj ]:

E[DjTjεj ] = E[εj |Dj = 1, Tj = 1] Pr(Dj = 1|Tj = 1) Pr(Tj = 1)
= 0,

where the first equality follows from Bayes’ Law and the second equality from
the definition of εj . Using the same reasoning, we have:
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E[Djεj ] = E[εj |Dj = 1, Tj = 1] Pr(Tj = 1|Dj = 1) + E[εj |Dj = 1, Tj = 0] Pr(Tj = 0|Dj = 1)
= 0

E[Tjεj ] = E[εj |Dj = 1, Tj = 1] Pr(Dj = 1|Tj = 1) + E[εj |Dj = 0, Tj = 1] Pr(Dj = 0|Tj = 1)
= 0

E[εj ] = E[εj |Tj = 1] Pr(Tj = 1) + E[εj |Tj = 0] Pr(Tj = 0)
= (E[εj |Tj = 0, Dj = 1] Pr(Dj = 1|Tj = 0) + E[εj |Tj = 0, Dj = 0] Pr(Dj = 0|Tj = 0)) Pr(Tj = 0)
= 0.

Using the vector version of the CLT that we have already invoked in the proof
of Lemma A.4, we have that

√
N X′ε

N ∼ N ((0, 0, 0, 0),Vxε) with:

Vxε = E[


εi
εiDi

εiTi
εiDiTi

( εi εiDi εiTi εiDiTi
)
]− E[


εi
εiDi

εiTi
εiDiTi

]E[
(
εi εiDi εiTi εiDiTi

)
]

= E[ε2i


1 Di Ti DiTi
Di Di DiTi DiTi
Ti DiTi Ti DiTi
DiTi DiTi DiTi DiTi

],

where we made use of the fact that T 2
i = Ti and D2

i = Di.

Before we can use the Delta Method to derive the distribution of the OLS DID
estimator, we need to compute plimN(X ′X)− 1 as a function of N and not NA,
as we did before. In order to obtain that without redoing the matrix inversion all
over again (which is pretty awful without the trick of factoring NA), we are going
to use the fact that the proportion of observations belonging to period A is equal
to T̄A = NA

N =
∑N
j=1 Tj , and the proportion of observations belonging to period

B is equal to 1 − T̄A. We also have that k = NB
NA

= (1−T̄A)N
T̄AN

= 1−T̄A
T̄A

. Finally,
note that π = D̄B

D̄A
. As a consequence of that and of our previous computations,

we have that:
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(X ′X)−1 = 1
NA

1
kD̄A(1− πD̄A)


D̄A −D̄A −D̄A D̄A

−D̄A
1
π D̄A − 1

π

−D̄A D̄A D̄A
k+1−D̄A(kπ+1)

1−D̄A
−D̄A

k+1−D̄A(kπ+1)
1−D̄A

D̄A − 1
π −D̄A

k+1−D̄A(kπ+1)
1−D̄A

k 1−πD̄A
1−D̄A

+ 1
π


= 1
NT̄A

1
1−T̄A
T̄A

D̄A(1− D̄B
D̄A

D̄A)
D̄A −D̄A −D̄A D̄A

−D̄A
D̄A
D̄B

D̄A − D̄A
D̄B

−D̄A D̄A D̄A

1−T̄A
T̄A

+1−D̄A( 1−T̄A
T̄A

D̄B
D̄A

+1)

1−D̄A
−D̄A

1−T̄A
T̄A

+1−D̄A( 1−T̄A
T̄A

D̄B
D̄A

+1)

1−D̄A

D̄A − D̄A
D̄B

−D̄A

1−T̄A
T̄A

+1−D̄A( 1−T̄A
T̄A

D̄B
D̄A

+1)

1−D̄A
1−T̄A
T̄A

1− D̄B
D̄A

D̄A

1−D̄A
+ D̄A

D̄B


= 1
N

1
(1− T̄A)(1− D̄B)
1 −1 −1 1
−1 1

D̄B
1 − 1

D̄B

−1 1 1−D̄B+T̄A(D̄B−D̄A)
T̄A(1−D̄A) − 1−D̄B+T̄A(D̄B−D̄A)

T̄A(1−D̄A)

1 − 1
D̄B

− 1−D̄B+T̄A(D̄B−D̄A)
T̄A(1−D̄A)

1
D̄A

1−T̄A
T̄A

1−D̄B
1−D̄A

+ 1
D̄B

 ,

because:

1−T̄A
T̄A

+ 1− D̄A( 1−T̄A
T̄A

D̄B
D̄A

+ 1)
1− D̄A

=
1 + 1−T̄A

T̄A
− 1−T̄A

T̄A
D̄B + D̄A

1− D̄A

= T̄A + 1− T̄A − D̄B + T̄AD̄B + D̄AT̄A

T̄A(1− D̄A)

=1− D̄B + T̄A(D̄B − D̄A)
T̄A(1− D̄A)

.

As a consequence, we have:

plimN(X ′X)−1 = 1
(1− pA)(1− p)


1 −1 −1 1
−1 1

p 1 − 1
p

−1 1 1
pA

− 1
pA

1 − 1
p − 1

pA
1
ppA

 ,

using the Law of Large Numbers, Slutsky’s Theorem and the fact that plimT̄A =
pA, the proportion of observations stemming from the After period, plimD̄A =
plimD̄B = p and the fact that 1

p
1−pA
pA

+ 1
p = 1

ppA
.
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Now, we can derive the asymptotic distribution of
√
N(Θ̂OLS − Θ) =

N(X ′X)−1
√
N
N X ′ε. Using the Delta Method, we have that

√
N(Θ̂OLS −Θ) d→

N
(
(0, 0, 0, 0), σ−1

XXVxεσ
−1
XX

)
. So we’re in for a treat: deriving the lower diagonal

term in the quadratic form σ−1
XXVxεσ

−1
XX .

Let us start. We first need the four terms on the last line of (1 − pA)2(1 −
p)2σ−1

XXVxε = (A,B,C,D) (the squared terms in the beginning are accounting
for the constant terms in the matrix multiplication):
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A = E[ε2j ]−
1
p
E[ε2jDj ]−

1
pA

E[ε2jTj ] + 1
ppA

E[ε2jDjTj ]

= E[ε2j |Dj = 0, Tj = 0] Pr(Dj = 0|Tj = 0) Pr(Tj = 0) + E[ε2j |Dj = 1, Tj = 0] Pr(Dj = 1|Tj = 0) Pr(Tj = 0)
+ E[ε2j |Dj = 0, Tj = 1] Pr(Dj = 0|Tj = 1) Pr(Tj = 1) + E[ε2j |Dj = 1, Tj = 1] Pr(Dj = 1|Tj = 1) Pr(Tj = 1)

− 1
p
E[ε2j |Dj = 1] Pr(Dj = 1)− 1

pA
E[ε2j |Tj = 1] Pr(Tj = 1)

+ 1
ppA

E[ε2j |Dj = 1, Tj = 1] Pr(Dj = 1|Tj = 1) Pr(Tj = 1)

= E[ε2j |Dj = 0, Tj = 0](1− p)(1− pA) + E[ε2j |Dj = 1, Tj = 0]p(1− pA)
+ E[ε2j |Dj = 0, Tj = 1](1− p)pA + E[ε2j |Dj = 1, Tj = 1]ppA
− E[ε2j |Dj = 1]− E[ε2j |Tj = 1]
+ E[ε2j |Dj = 1, Tj = 1]

= E[ε2j |Dj = 0, Tj = 0](1− p)(1− pA) + E[ε2j |Dj = 1, Tj = 0]p(1− pA)
+ E[ε2j |Dj = 0, Tj = 1](1− p)pA + E[ε2j |Dj = 1, Tj = 1]ppA
− E[ε2j |Dj = 1, Tj = 0](1− pA)− E[ε2j |Dj = 1, Tj = 1]pA
− E[ε2j |Dj = 0, Tj = 1](1− p)− E[ε2j |Dj = 1, Tj = 1]p
+ E[ε2j |Dj = 1, Tj = 1]

= E[ε2j |Dj = 0, Tj = 0](1− p)(1− pA)
− E[ε2j |Dj = 1, Tj = 0](1− p)(1− pA)
− E[ε2j |Dj = 0, Tj = 1](1− p)(1− pA)
+ E[ε2j |Dj = 1, Tj = 1](1− p)(1− pA)

= (1− p)(1− pA)(σ2
ε0,0 − σ

2
ε1,0 − σ

2
ε0,1 + σ2

ε1,1)

B = E[ε2jDj ]−
1
p
E[ε2jDj ]−

1
pA

E[ε2jDjTj ] + 1
ppA

E[ε2jDjTj ]

= E[ε2jDj ](1−
1
p

) + E[ε2jDjTj ]
1
pA

(1
p
− 1)

= (1− 1
p

)E[ε2j |Dj = 1] Pr(Dj = 1) + 1
pA

(1
p
− 1)E[ε2j |Dj = 1, Tj = 1] Pr(Dj = 1|Tj = 1) Pr(Tj = 1)

= p(1− 1
p

)
(
E[ε2j |Dj = 1, Tj = 0] Pr(Tj = 0|Dj = 1) + E[ε2j |Dj = 1, Tj = 1] Pr(Tj = 1|Dj = 1)

)
+ 1
pA

(1
p
− 1)σ2

ε1,1ppA

= p(1− 1
p

)
(
σ2
ε1,0(1− pA) + σ2

ε1,1pA

)
+ 1
pA

(1
p
− 1)σ2

ε1,1ppA

= −(1− p)
(
σ2
ε1,0(1− pA) + σ2

ε1,1pA

)
+ (1− p)σ2

ε1,1

= (1− p)
(
σ2
ε1,1 − σ

2
ε1,0(1− pA)− σ2

ε1,1pA

)
= (1− p)(1− pA)

(
σ2
ε1,1 − σ

2
ε1,0

)
C = E[ε2jTj ]−

1
p
E[ε2jDjTj ]−

1
pA

E[ε2jTj ] + 1
ppA

E[ε2jDjTj ]

= E[ε2j |Tj = 1] Pr(Tj = 1)− 1
p
E[ε2j |Dj = 1, Tj = 1] Pr(Dj = 1|Tj = 1) Pr(Tj = 1)

− 1
pA

E[ε2j |Tj = 1] Pr(Tj = 1) + 1
ppA

E[ε2j |Dj = 1, Tj = 1] Pr(Dj = 1|Tj = 1) Pr(Tj = 1)

= −(1− pA)(E[ε2j |Dj = 1, Tj = 1] Pr(Dj = 1|Tj = 1) + E[ε2j |Dj = 0, Tj = 1] Pr(Dj = 0|Tj = 1))
+ E[ε2j |Dj = 1, Tj = 1](1− pA)

= (1− pA)(σ2
ε1,1(1− p)− (1− p)σ2

ε0,1)
= (1− p)(1− pA)(σ2

ε1,1 − σ
2
ε0,1)

D = E[ε2jDjTj ]−
1
p
E[ε2jDjTj ]−

1
pA

E[ε2jDjTj ] + 1
ppA

E[ε2jDjTj ]

= E[ε2j |Dj = 1, Tj = 1] Pr(Dj = 1|Tj = 1) Pr(Tj = 1)(1− 1
p
− 1
pA

+ 1
ppA

)

= σ2
ε1,1(ppA − pA − p+ 1)

= (1− p)(1− pA)σ2
ε1,1
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since 1− p− pA + ppA = (1− p)(1− pA), and where σ2
εd,t

= E[ε2j |Dj = d, Tj = t].
We also make use of the fact that Pr(Dj = d|Tj = t) = Pr(Dj = d) and Pr(Tj =
t|Dj = d) = Pr(Tj = t), that is that the participants and non participants are
sampled exactly in the same proportion in both periods.

Let us now obtain V[β̂OLS ], the variance of the β̂OLS parameter. It is the last
diagonal term of the matrix σ−1

XXVxεσ
−1
XX . We know that:

V[β̂OLS ] = 1
(1− p)2(1− pA)2

(
A− 1

p
B− 1

pA
C + 1

ppA
D
)

= 1
(1− p)(1− pA)

(
σ2
ε0,0 − σ

2
ε1,0 − σ

2
ε0,1 + σ2

ε1,1 −
1
p

(σ2
ε1,1 − σ

2
ε1,0)

− 1
pA

(σ2
ε1,1 − σ

2
ε0,1) + 1

ppA
σ2
ε1,1

)
= 1

(1− p)(1− pA)

(
σ2
ε0,0 + σ2

ε1,0(−1 + 1
p

) + σ2
ε0,1(−1 + 1

pA
) + σ2

ε1,1(1− 1
p
− 1
pA

+ 1
ppA

)
)

= 1
(1− p)(1− pA)

(
σ2
ε0,0 + σ2

ε1,0

1− p
p

+ σ2
ε0,1(1− pA

pA
+ σ2

ε1,1

ppA − pA − p+ 1
ppA

)
=

σ2
ε0,0

(1− p)(1− pA) +
σ2
ε1,0

p(1− pA) +
σ2
ε0,1

(1− p)pA
+
σ2
ε1,1

ppA
,

using again the fact that 1− p− pA + ppA = (1− p)(1− pA).

Finally, using the formula for εj , we have:
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σ2
ε0,0 = E[ε2j |Dj = 0, Tj = 0]

= E[(Yj − E[Y 0
j |Dj = 0, Tj = 0])2|Dj = 0, Tj = 0]

= E[(Y 0
i,B − E[Y 0

i,B |Di = 0)2]|Di = 0]
= V[Y 0

i,B |Di = 0]
σ2
ε1,0 = E[ε2j |Dj = 1, Tj = 0]

= E[(Yj − E[Y 0
j |Dj = 1, Tj = 0])2|Dj = 1, Tj = 0]

= E[(Y 0
i,B − E[Y 0

i,B |Di = 1)2]|Di = 1]
= V[Y 0

i,B |Di = 1]
σ2
ε0,1 = E[ε2j |Dj = 0, Tj = 1]

= E[(Yj − E[Y 0
j |Dj = 0, Tj = 1])2|Dj = 0, Tj = 1]

= E[(Y 0
i,A − E[Y 0

i,A|Di = 0)2]|Di = 0]
= V[Y 0

i,A|Di = 0]
σ2
ε1,1 = E[ε2j |Dj = 1, Tj = 1]

= E[(Yj − E[Y 1
j |Dj = 1, Tj = 1])2|Dj = 1, Tj = 1]

= E[(Y 1
i,A − E[Y 1

i,A|Di = 1)2]|Di = 1]
= V[Y 1

i,A|Di = 1]

This proves the result.

A.3.3 Proof of Theorem 4.14

The proof uses saturated models as Angrist and Pischke(2009). A saturated
model is a model involving only categorical variables where the model has a
separate parameter for each various sets of parameter values that the covariates
can take. We can check that Sun and Abraham’s model is a saturated model.
Let’s start with the model in repeated cross sections (with group fixed effects).
In the population, excluding the group of individuals that are always treated
(adding this group would entail adding a separate dummy for each date at which
they are observed, I leave that as an exercise), with T = 4 (larger time series do
not change the basic result):

https://press.princeton.edu/books/paperback/9780691120355/mostly-harmless-econometrics
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E[Yi,1|Di =∞] = α

E[Yi,2|Di =∞] = α+ δ2

E[Yi,3|Di =∞] = α+ δ3

E[Yi,4|Di =∞] = α+ δ4

E[Yi,1|Di = 2] = α+ µ2

E[Yi,2|Di = 2] = α+ µ2 + δ2 + βSA2,0

E[Yi,3|Di = 2] = α+ µ2 + δ3 + βSA2,1

E[Yi,4|Di = 2] = α+ µ2 + δ4 + βSA2,2

E[Yi,1|Di = 3] = α+ µ3 + βSA3,−2

E[Yi,2|Di = 3] = α+ µ3 + δ2

E[Yi,3|Di = 3] = α+ µ3 + δ3 + βSA3,0

E[Yi,4|Di = 3] = α+ µ3 + δ4 + βSA3,1

E[Yi,1|Di = 4] = α+ µ4 + βSA4,−3

E[Yi,2|Di = 4] = α+ µ4 + δ2 + βSA4,−2

E[Yi,3|Di = 4] = α+ µ4 + δ3

E[Yi,4|Di = 4] = α+ µ4 + δ4 + βSA4,0

The model has 16 parameters to model the 16 different combinations of the
regressors. It is thus a saturated model. Let us now state the Linear Conditional
Expectation Function Theorem:

Theorem A.2 (Linear Conditional Expectation Function). Let E[Yi|Xi] =
X ′iΘ∗ for a K × 1 vector of coefficients Θ∗. Then Θ∗ = E[X ′iXi]−1E[X ′iYi] =
ΘOLS.

Theorem A.2 states that the coefficients of a model with a linear conditional
expectation function can be obtained by using OLS. Applying Theorem A.2 to
Sun and Abraham’s saturated model, we have that:
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α = E[Yi,1|Di =∞] = αOLS

δ2 = E[Yi,2|Di =∞]− E[Yi,1|Di =∞] = δOLS2

δ3 = E[Yi,3|Di =∞]− E[Yi,1|Di =∞] = δOLS3

δ4 = E[Yi,4|Di =∞]− E[Yi,1|Di =∞] = δOLS4

µ2 = E[Yi,1|Di = 2]− E[Yi,1|Di =∞] = µOLS2

µ3 = E[Yi,2|Di = 3]− E[Yi,2|Di =∞] = µOLS3

µ4 = E[Yi,3|Di = 4]− E[Yi,3|Di =∞] = µOLS4

βSA2,0 = E[Yi,2|Di = 2]− E[Yi,1|Di = 2]− (E[Yi,2|Di =∞]− E[Yi,1|Di =∞]) = βOLS2,0

βSA2,1 = E[Yi,3|Di = 2]− E[Yi,1|Di = 2]− (E[Yi,3|Di =∞]− E[Yi,1|Di =∞]) = βOLS2,1

βSA2,2 = E[Yi,4|Di = 2]− E[Yi,1|Di = 2]− (E[Yi,4|Di =∞]− E[Yi,1|Di =∞]) = βOLS2,2

βSA3,−2 = E[Yi,1|Di = 3]− E[Yi,2|Di = 3]− (E[Yi,1|Di =∞]− E[Yi,2|Di =∞]) = βOLS3,−2

βSA3,0 = E[Yi,3|Di = 3]− E[Yi,2|Di = 3]− (E[Yi,3|Di =∞]− E[Yi,2|Di =∞]) = βOLS3,0

βSA3,1 = E[Yi,4|Di = 3]− E[Yi,2|Di = 3]− (E[Yi,4|Di =∞]− E[Yi,2|Di =∞]) = βOLS3,1

βSA4,−3 = E[Yi,1|Di = 4]− E[Yi,3|Di = 4]− (E[Yi,1|Di =∞]− E[Yi,3|Di =∞]) = βOLS4,−3

βSA4,−2 = E[Yi,2|Di = 4]− E[Yi,3|Di = 4]− (E[Yi,2|Di =∞]− E[Yi,3|Di =∞]) = βOLS4,−2

βSA4,0 = E[Yi,4|Di = 4]− E[Yi,3|Di = 4]− (E[Yi,4|Di =∞]− E[Yi,3|Di =∞]) = βOLS4,0

This proves that Sun and Abraham’s estimator is actually equal to the individual
DID estimators βSAd,τ = ∆Y

DID(d,∞, τ, d− 1) in the population, which completes
the proof for the model with group fixed effects and T = 4. I leave generalizing
this result to any T and to the panel data model with individual fixed effects as
an exercise.

A.3.4 Proof of Theorem 4.15

Let us start with Sun and Abraham’s model in repeated cross sections, with
group fixed effects. Here is how we can write this model with four time periods:

Y = XΘ + ε
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with

Y =



Y1,1
...

YN1,1
Y1,2
...

YN2,2
Y1,3
...

YN3,3
Y1,4
...

YN4,4



X =



1 D2
1 D3

1 D4
1 0 0 0 0 0 0 D3

1 0 0 D4
1 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 D2
N1

D3
N1

D4
N1

0 0 0 0 0 0 D3
N1

0 0 D4
N1

0 0
1 D2

1 D3
1 D4

1 1 0 0 D2
1 0 0 0 0 0 0 D4

1 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1 D2

N2
D3
N2

D4
N2

1 0 0 D2
N2

0 0 0 0 0 0 D4
N2

0
1 D2

1 D3
1 D4

1 0 1 0 0 D2
1 0 0 D3

1 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1 D2

N3
D3
N3

D4
N3

0 1 0 0 D2
N3

0 0 D3
N3

0 0 0 0
1 D2

1 D3
1 D4

1 0 0 1 0 0 D2
1 0 0 D3

1 0 0 D4
1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 D2
N4

D3
N4

D4
N4

0 0 1 0 0 D2
N4

0 0 D3
N4

0 0 D4
N4



Θ =



α
µ2
µ3
µ4
δ2
δ3
δ4
βSA2,0
βSA2,1
βSA2,2
βSA3,−2
βSA3,0
βSA3,1
βSA4,−3
βSA4,−2
βSA4,0



ε =



ε1,1
...

εN1,1
ε1,2
...

εN2,2
ε1,3
...

εN3,3
ε1,4
...

εN4,4



,
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with Dd
i = 1[Di = d] and Nt the number of observations at time t. If we are

in a panel, each i is the same across time periods. If we are in a repeated
cross section, the i index refers to different individuals. This model is very
difficult to solve by brute force, since its X ′X matrix is 16 × 16 and has no
easy simplification on sight. Here is the X ′X for panel data (which is slightly
simpler), with D̄d = 1

N

∑N
i=1 1[Di = d], and N the number of individuals in the

panel:

X ′X = N



T TD̄2 TD̄3 TD̄4 1 1 1 D̄2 D̄2 D̄2 D̄3 D̄3 D̄3 D̄4 D̄4 D̄4

TD̄2 TD̄2 0 0 D̄2 D̄2 D̄2 D̄2 D̄2 D̄2 0 0 0 0 0 0
TD̄3 0 TD̄3 0 D̄3 D̄3 D̄3 0 0 0 D̄3 D̄3 D̄3 0 0 0
TD̄4 0 0 TD̄4 D̄4 D̄4 D̄4 0 0 0 0 0 0 D̄4 D̄4 D̄4

1 D̄2 D̄3 D̄4 1 0 0 D̄2 0 0 0 0 0 0 D̄4 0
1 D̄2 D̄3 D̄4 0 1 0 0 D̄2 0 0 D̄3 0 0 0 0
1 D̄2 D̄3 D̄4 0 0 1 0 0 D̄2 0 0 D̄3 0 0 D̄4

D̄2 D̄2 0 0 D̄2 0 0 D̄2 0 0 0 0 0 0 0 0
D̄2 D̄2 0 0 0 D̄2 0 0 D̄2 0 0 0 0 0 0 0
D̄2 D̄2 0 0 0 0 D̄2 0 0 D̄2 0 0 0 0 0 0
D̄3 0 D̄3 0 0 0 0 0 0 0 D̄3 0 0 0 0 0
D̄3 0 D̄3 0 0 D̄3 0 0 0 0 0 D̄3 0 0 0 0
D̄3 0 D̄3 0 0 0 D̄3 0 0 0 0 0 D̄3 0 0 0
D̄4 0 0 D̄4 0 0 0 0 0 0 0 0 0 D̄4 0 0
D̄4 0 0 D̄4 D̄4 0 0 0 0 0 0 0 0 0 D̄4 0
D̄4 0 0 D̄4 0 0 D̄4 0 0 0 0 0 0 0 0 D̄4



The epiphany comes when you are able to write this model with a separate
constant, time and group dummies for each separate treated group for which we
want to estimate the DID model for. We have 9 separate interaction parameters
βSAd,τ to estimate. We are thus going to estimate 9× 4 parameters total (i.e. run
9 separate regressions with four parameters, but all at once). We thus have to
write a 36× 36 X ′X matrix. The key is that this matrix is going to be block
diagonal, with 4× 4 blocks that are identical to the blocks of the X ′X matrix
in the case of a simple OLS DID estimator with two time periods. Also, the
parameters that are redundant in this model (i.e. that appear several times at
different places) will be estimated in exactly the same way, which shows that the
two formulations of the model (16× 16 and 36× 36) are equivalent and estimate
the exact same set of 16 parameters. In order to see how this works (and to prove
the result), let’s write the model for βSA2,0 . To be able to do that, we are going to
order all the observations in each time period by the opposite of the treatment
group to which they belong. We also denote Nd

t the number of observations of
group Di = d in period t, Dd

i,t = 1[Di = d] and T d+τ
i,t = 1[d+ τ = t]. With these

notations, we have:
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

Y1,1
...

YN∞1 ,1
YN∞1 +1,1

...
YN∞1 +N2

1 ,1
Y1,2
...

YN∞2 ,2
YN∞2 +1,2

...
YN∞2 +N2

2 ,2


︸ ︷︷ ︸

Y2,0

=



1 D2
1,1 T 2

1,1 D2
1,1T

2
1,1

...
...

...
...

1 D2
N∞1 ,1 T 2

N∞1 ,1 D2
N∞1 ,1T

2
N∞1 ,1

1 D2
N∞1 +1,1 T 2

N∞1 +1,1 D2
N∞1 +1,1T

2
N∞1 +1,1

...
...

...
...

1 D2
N∞1 +N2

1 ,1
T 2
N∞1 +N2

1 ,1
D2
N∞1 +N2

1 ,1
T 2
N∞1 +N2

1 ,1
1 D2

1,2 T 2
1,2 D2

1,2T
2
1,2

...
...

...
...

1 D2
N∞1 ,2 T 2

N∞1 ,2 D2
N∞1 ,2T

2
N∞1 ,2

1 D2
N∞1 +1,2 T 2

N∞1 +1,2 D2
N∞1 +1,2T

2
N∞1 +1,2

...
...

...
...

1 D2
N∞1 +N2

1 ,2
T 2
N∞1 +N2

1 ,2
D2
N∞1 +N2

1 ,2
T 2
N∞1 +N2

1 ,2


︸ ︷︷ ︸

X2,0


α̃2,0
µ̃2,0
δ̃2,0
βSA2,0


︸ ︷︷ ︸

Θ2,0

+



ε1,1
...

εN∞1 ,1
εN∞1 +1,1

...
εN∞1 +N2

1 ,1
ε1,2
...

εN∞2 ,2
εN∞2 +1,2

...
εN∞2 +N2

2 ,2


︸ ︷︷ ︸

ε2,0

Now, we can write 9 such models, one for each βSAd,τ . If we stack the Yd,τ on top
of each other, starting with d = 2 and τ = 0, and we stack in the same way the
Θd,τ vectors, and, finally, we regroup all the Xd,τ matrices in a block diagonal
matrix, we have a new model Ỹ = X̃Θ̃ + ε̃. The stacked model has 4× 9 = 36
parameters while the original model has 16 parameters. For the two models
to be identical, it has to be that there exists 36 − 16 = 20 direct restrictions
on the parameters of the stacked model. Using the fact that some parts of the
data set are duplicated in teh stack model, we can determine the link between
the parameters in the stacked model and the ones in the original model. For
example, we know that Y1,1 = α̃2,0 +ε1,1 = α̃2,1 +ε1,1 = α̃2,2 +ε1,1 = α+ε1,1. As
a consequence, we have α̃2,0 = α̃2,1 = α̃2,2 = α. Using similar sets of restrictions,
we can also show that: δ̃2,0 = δ2, δ̃2,1 = δ3 and δ̃2,2 = δ4; µ̃d,τ = µd, ∀d, τ ;
α̃3,−2 = α̃3,0 = α̃3,1 = α + δ2; α̃4,−3 = α̃4,−2 = α̃4,0 = α + δ3; δ̃3,−2 = −δ2;
δ̃3,0 = δ3 − δ2; δ̃3,1 = δ4 − δ2; δ̃4,−3 = −δ3; δ̃4,−2 = δ2 − δ3; δ̃4,0 = δ4 − δ3. We
have thus shown that every single parameter in the stacked model can be derived
from the parameters in the original model. What is left to check now is that
the estimation of the stacked model by OLS abides by the constraints implied
by these equalities. In order to complete the proof, we make use of the fact
that the inverse of a block diagonal matrix is the blog diagonal matrix of the
inverses of each block. Using the proof of Theorem 4.7 (especially the beginning
of the proof, which derives the OLS DID estimator in repeated cross sections of
different sizes), we can now show that:

https://en.wikipedia.org/wiki/Block_matrix
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ˆ̃αOLSd,τ = Ȳ∞d−1

ˆ̃µOLSd,τ = Ȳ dd−1 − Ȳ∞d−1

ˆ̃δOLSd,τ = Ȳ∞d+τ − Ȳ∞d−1

β̂SAd,τ = Ȳ dd+τ − Ȳ dd−1 − (Ȳ∞d+τ − Ȳ∞d−1).

These results show that all the constraints on the parameters of the stacked
model are verified (I leave this as an exercise). The last equality proves the
result for the OLS DID model in repeated cross sections. The proof for panel
data follows exactly the same lines.

Let us now turn to the First Difference estimator in panel data. The First
Difference transformation of Sun and Abraham model which uses d− 1 as the
benchmark period can be written as follows (for τ 6= −1):

Yi,d+τ − Yi,d−1 = αFDd,τ + βFDd,τ 1[Di = d] + εFDi,d+τ ,

with:

αFDd,τ = δd+τ − δd−1

βFDd,τ = βSAd,τ

εFDi,d+τ = εSAi,d+τ − εFDi,d−1.

Using the same trick as for the model in repeated cross sections, we can rewrite
this model as stacked model with a block diagonal matrix of covariates. Here is
the block corresponding to the estimation of βSA2,0 :



Y1,2 − Y1,1
...

YN∞,2 − YN∞,1
YN∞+1,2 − YN∞+1,1

...
YN∞+N2,2 − YN∞+N2,1


︸ ︷︷ ︸

∆Y2,0

=



1 0
...

...
1 0
1 1
...

...
1 1


︸ ︷︷ ︸

∆X2,0

(
αFD2,0
βFD2,0

)
︸ ︷︷ ︸

ΘFD2,0

+



εFD1,2
...

εFDN∞,2
εFDN∞+1,2

...
εFDN∞+N2,2


︸ ︷︷ ︸

εFD2,0

Stacking all the vectors of outcomes, the vector of coefficients and the vector
of residuals on top of each other, and organizing the matrices of covariates in a
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block diagonal matrix, we obtain the stacked Sun and Abraham model in first
differences: ∆Y = ∆XΘFD + εFD. Using the fact that the inverse of a block
diagonal matrix is the blog diagonal matrix of the inverses of each block and
the proof of Lemma A.3, we can show that β̂FDd,τ is the with/without estimator
applied to Yi,d+τ − Yi,d−1. The result follows.

Let us now study the Within estimator of Sun and Abraham model in panel
data. The within mean of Sun and Abraham model depends on the group the
observation belongs to. For i such that Di = d, we have:

1
T

T∑
t=1

Yi,t︸ ︷︷ ︸
Ȳi,.

= 1
T

T∑
t=1

δt︸ ︷︷ ︸
δ̄

+ 1
T

T∑
τ 6=−1

βSAd,τ︸ ︷︷ ︸
β̄d

1[Di = d] + 1
T

T∑
t=1

εi,t︸ ︷︷ ︸
ε̄i,.

.

As a consequence, for i such that Di = d or Di =∞, we can write the within
transformation of Sun and Abraham model as follows:

Yi,d+τ − Ȳi,. = δd−1 − δ̄︸ ︷︷ ︸
αFE
d

+ (δd+τ − δd−1)︸ ︷︷ ︸
δFE
d+τ

1[Ti = d+ τ ]−β̄d︸︷︷︸
µFE
d

1[Di = d] + βSAd,τ 1[Di = d]1[Ti = d+ τ ] + εi,t − ε̄i,..

The within transformation of Sun and Abraham model is thus equivalent to
the OLS DID model applied to the within-transformed outcomes Yi,d+τ − Ȳi,..
Building a stacked model of the within transformed Sun and Abraham model
and using the fact that the inverse of a block diagonal matrix is the blog diagonal
matrix of the inverses of each block along with Theorem 4.5 proves that:

β̂SAd,τ =
∑N
i=1(Yi,d+τ − Ȳi,. − (Yi,d−1 − Ȳi,.))1[Di = d]∑N

i=1 1[Di = d]

−
∑N
i=1(Yi,d+τ − Ȳi,. − (Yi,d−1 − Ȳi,.))1[Di =∞]∑N

i=1 1[Di =∞]

=
∑N
i=1(Yi,d+τ − Yi,d−1)1[Di = d]∑N

i=1 1[Di = d]

−
∑N
i=1(Yi,d+τ − Yi,d−1)1[Di =∞]∑N

i=1 1[Di =∞]
,

which proves the result.

Let us finally look at the Least Squares Dummy Variables estimator. Let’s denote
Xµ the matrix of individual dummies in the LSDV estimator. We are going

https://en.wikipedia.org/wiki/Block_matrix
https://en.wikipedia.org/wiki/Block_matrix
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to apply Theorem A.1, i.e. Frish-Waugh-Lovell Theorem, partialling out these
individual dummies from the list of regressors. First, we have (X ′µXµ)−1 = 1

T IN
where IN is the identity matrix of dimension N and T is the total number of
time periods in the panel. Second, we have that MµY = Xµ(X ′µXµ)−1X ′µY =(
. . . , Yi,t − Ȳi,., . . .

)
. For the time fixed effects, we have MµX−µ,T a matrix with

1− 1
T where Ti,t = 1 and − 1

T otherwise. For the interactive treatment dummies,
we have MµX−µ,DT a matrix with Dd

i (1− 1
T ) where Dd

i appeared in the original
X−µ,DT matrix (the last 9 columns of the X matrix) and −D

d
i

T otherwise. As a
consequence of Theorem A.1, we can rewrite the LSDV model as follows:

Yi,t − Ȳi,. = δt − δ̄ −
∑
d

β̄SAd 1[Di = d] +
∑
d

∑
τ 6=−1

βSAd,τ 1[Di = d]1[t = d+ τ ] + εLSDVi,t − ε̄LSDVi,. .

This is the same formula as the one we have uncovered in the within trans-
formation we have studied just above. Using the same approach proves the
result.

A.3.5 Proof of Theorem 4.19
Using the beginning of the proof of Lemma A.4, we know that:

√
N( ˆ̃ΘOLS−Θ̃) =

N(X̃ ′X̃)−1
√
N
N X̃ ′ε̃. Using Slutsky’s Theorem, we know that we can study both

terms separately (see the same proof of Lemma A.4). N(X̃ ′X̃)−1 can be derived
rather directly from the fact that Sun and Abraham model can be written as a
block diagonal matrix, as shown in the proof of Theorem 4.15. The most difficult
part is going to be to derive the distribution of

√
N
N X̃ ′ε̃.

Let us start with N(X̃ ′X̃)−1. Let us define Nt,d the number of observations
observed in group d at period t. We also define NB

d,τ = Nd−1,∞ + Nd−1,d the
number of observations used to estimate β̂SAd,τ that are observed in the reference
(or before) period and NA

d,τ = Nd+τ,∞ + Nd+τ,d the number of observations
used to estimate β̂SAd,τ that are observed in the after period. We also define
NSA
d,τ = NA

d,τ + NB
d,τ , the number of observations used to estimate β̂SAd,τ . We

also define T̄ d,τA = NAd,τ
NSA
d,τ

, kd,τ = NBd,τ
NA
d,τ

= 1−T̄d,τ
A

T̄d,τ
A

. We let D̄d,τ
A and D̄d,τ

B denote
the proportion of treated observations in the after and before periods used to
estimate β̂SAd,τ . We also define P̄ d,τ = NSAd,τ

N the proportion of observations used
to estimate β̂SAd,τ . We also have: plimP̄ d,τ = pd,τ , plimD̄d,τ

A = plimD̄d,τ
B = pd,τD

and plimT̄ d,τA = pd,τA . pd,τ = Pr(Dd,τ
i = 1), with Dd,τ

i = 1[(Di = d ∨ Di =
∞)∧ (Ti = d− 1∨Ti = d+ τ)] a dummy indicating that a unit in the population
belongs to the set of units used to identify βSAd,τ . p

d,τ
D = Pr(Di = d|Dd,τ

i = 1)
is the proportion of treated units among the set of units used to identify βSAd,τ .
pd,τA = Pr(Ti = d+ τ |Dd,τ

i = 1) is the proportion of units belonging to the after
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period among the set of units used to identify βSAd,τ . Finally, let (X ′X)−1
d,τ denote

the block of the matrix (X̃ ′X̃)−1 which is used to estimate β̂SAd,τ . With all these
definitions, we can now follow the proof of Theorem 4.7 in order to derive the
following result:

σd,τ
X̃X̃−1 = plimN(X ′X)−1

d,τ = 1
pd,τ (1− pd,τA )(1− pd,τD )


1 −1 −1 1
−1 1

pd,τ
D

1 − 1
pd,τ
D

−1 1 1
pd,τ
A

− 1
pd,τ
A

1 − 1
pd,τ
D

− 1
pd,τ
A

1
pd,τ
D
pd,τ
A


Using the fact that the inverse of a block diagonal matrix is the blog diagonal
matrix of the inverses of each block, we now know plimN(X̃ ′X̃)−1 = σ−1

X̃X̃
is

block diagonal matrix with blocks equal to σd,τ
X̃X̃−1 .

Let us now turn to
√
N
N X̃ ′ε̃. In order to derive its distribution, we have to

write Sun and Abraham model in a repeated cross section with the observations
grouped by blocks corresponding to the parameters they help to estimate. This
model can be written as:

YjD
d,τ
j = α̃d,τDd,τ

j + µ̃d,τ1[Dj = d]Dd,τ
j + δ̃d,τ1[Tj = d+ τ ]Dd,τ

j

+ βSAd,τ 1[Di = d]1[Tj = d+ τ ]Dd,τ
j + ε̃jD

d,τ
j ,

with:

ε̃j = Yj −
(
E[Y 0

j |Dj =∞, Tj = d− 1]
+ 1[Dj = d](E[Y 0

j |Dj = d, Tj = d− 1]− E[Y 0
j |Dj =∞, Tj = d− 1]) + 1[Tj = d+ τ ](E[Y 0

j |Dj =∞, Tj = d+ τ ]− E[Y 0
j |Dj =∞, Tj = d− 1])

+ 1[Dj = d]1[Tj = d+ τ ](E[Y 1
j |Dj = d, Tj = d+ τ ]− E[Y 0

j |Dj = d, Tj = d− 1]
−(E[Y 0

j |Dj =∞, Tj = d+ τ ]− E[Y 0
j |Dj =∞, Tj = d− 1]))

)
.

It is pretty straightforward to prove that E[ε̃jDd,τ
j ] = 0. For that, note that

Dd,τ
j = f(Dj , Tj) so that conditioning onDd,τ

j is irrelevant when also conditioning
on (Dj , Tj). Then, check that E[ε̃jDd,τ

j 1[Dj = d]1[Tj = d+ τ ]] = 0. The same
thing holds for E[ε̃jDd,τ

j 1[Tj = d + τ ]] = 0 and for E[ε̃jDd,τ
j 1[Dj = d]] = 0,

which proves the result.

It can also be shown that E[ε̃jDd,τ
j Dd′,τ ′

j ] = 0, with either j 6= j′ or τ 6= τ ′

or both. If it is the case that Dd,τ
j ⊥⊥ Dd′,τ ′

j , then the term is zero. If Dd,τ
j

https://en.wikipedia.org/wiki/Block_matrix
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and Dd′,τ ′

j are not independent, by definition of Dd,τ
j , E[ε̃jDd,τ

j Dd′,τ ′

j ] can only
involve the following terms: E[ε̃j |Dj = d, Tj = d+ τ ], E[ε̃j |Dj = d, Tj = d− 1],
E[ε̃j |Dj =∞, Tj = d+ τ ] and E[ε̃j |Dj =∞, Tj = d− 1], and all of these terms
are equal to zero.

Using the vector version of the Central Limit Theorem that we have already used
in the proof of Theorem 4.7, we thus have that

√
N
N X̃ ′ε̃ ∼ N (0,Vx̃ε̃). Using the

Delta Method, we have that
√
N(Θ̂OLS −Θ) d→ N

(
0, σ−1

X̃X̃
Vx̃ε̃σ

−1
X̃X̃

)
. In order

to prove the result, we simply need to derive the fourth term on the diagonal of
each 4× 4 block of σ−1

X̃X̃
Vx̃ε̃σ

−1
X̃X̃

. Since σ−1
X̃X̃

is block diagonal, the 4× 4 blocks
of σ−1

X̃X̃
Vx̃ε̃σ

−1
X̃X̃

are equal to σd,τ
X̃X̃−1Vd,τ

x̃ε̃ σ
d,τ

X̃X̃−1 , with (following the proof of
Theorem 4.7):

Vd,τ
x̃ε̃ = E[ε2jD

d,τ
j


1 Dd

j T d,τj Dd
jT

d,τ
j

Dd
j Dd

j Dd
jT

d,τ
j Dd

jT
d,τ
j

T d,τj Dd
jT

d,τ
j T d,τj Dd

jT
d,τ
j

Dd
jT

d,τ
j Dd

jT
d,τ
j Dd

jT
d,τ
j Dd

jT
d,τ
j

],

with Dd
j = 1[Dj = d] and T d,τj = 1[Tj = d + τ ]Dd,τ

j . Following the proof of
Theorem 4.7 proves the result.

A.3.6 Proof of Theorem 4.21
The key to the proof relies on the covariance terms. The covariance terms come
from the off-4 × 4-block-diagonal elements of the σ−1

X̃X̃
Vx̃ε̃σ

−1
X̃X̃

matrix. They
are due to the fact that the same data are used repeatedly to estimate the βSAd,τ
parameters. For example, the observations from the never treated group are used
as benchmarks for the estimation of βSA2,0 , βSA2,1 and βSA2,2 . The same observations
are used as post-treatment observations for the estimation of βSA2,0 , βSA3,−2 and
βSA4,−3.

In order to rigorously derive these covariance terms, we need to derive the off-
4×4-block-diagonal elements of the σ−1

X̃X̃
Vx̃ε̃σ

−1
X̃X̃

matrix in the proof of Theorem
4.19. For two sets of observations used to estimate βSAd,τ and βSAd′,τ ′ , d 6= d′ or
τ 6= τ ′, we only need the last line of the off-4 × 4-block-diagonal covariance
matrix of σ−1

X̃X̃
Vx̃ε̃σ

−1
X̃X̃

. Indeed, using results in the proof of Theorem 4.19, we
can show that:

Cov(β̂SAd,τ , β̂SAd′,τ ′) = 1
pd,τpd′,τ ′(1− pd,τA )(1− pd′,τ ′A )(1− pd,τD )(1− pd′,τ ′D )(
A4 −

1
pd,τD

B4 −
1
pd,τA

C4 + 1
pd,τA pd,τD

D4

)
,
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with:

A4 = E[ε2jD
d′,τ ′

j Dd,τ
j ]− 1

pd
′,τ ′

D

E[ε2jDd′

j D
d′,τ ′

j Dd,τ
j ]− 1

pd
′,τ ′

A

E[ε2jT
d′,τ ′

j Dd′,τ ′

j Dd,τ
j ]

+ 1
pd
′,τ ′

D pd
′,τ ′

A

E[ε2jDd′

j T
d′,τ ′

j Dd′,τ ′

j Dd,τ
j ]

B4 = E[ε2jD
d′,τ ′

j Dd
jD

d,τ
j ]− 1

pd
′,τ ′

D

E[ε2jDd′

j D
d′,τ ′

j Dd
jD

d,τ
j ]− 1

pd
′,τ ′

A

E[ε2jT
d′,τ ′

j Dd′,τ ′

j Dd
jD

d,τ
j ]

+ 1
pd
′,τ ′

D pd
′,τ ′

A

E[ε2jDd′

j T
d′,τ ′

j Dd′,τ ′

j Dd
jD

d,τ
j ]

C4 = E[ε2jD
d′,τ ′

j T d,τj Dd,τ
j ]− 1

pd
′,τ ′

D

E[ε2jDd′

j D
d′,τ ′

j T d,τj Dd,τ
j ]− 1

pd
′,τ ′

A

E[ε2jT
d′,τ ′

j Dd′,τ ′

j T d,τj Dd,τ
j ]

+ 1
pd
′,τ ′

D pd
′,τ ′

A

E[ε2jDd′

j T
d′,τ ′

j Dd′,τ ′

j T d,τj Dd,τ
j ]

D4 = E[ε2jD
d′,τ ′

j Dd
jT

d,τ
j Dd,τ

j ]− 1
pd
′,τ ′

D

E[ε2jDd′

j D
d′,τ ′

j Dd
jT

d,τ
j Dd,τ

j ]− 1
pd
′,τ ′

A

E[ε2jT
d′,τ ′

j Dd′,τ ′

j Dd
jT

d,τ
j Dd,τ

j ]

+ 1
pd
′,τ ′

D pd
′,τ ′

A

E[ε2jDd′

j T
d′,τ ′

j Dd′,τ ′

j Dd
jT

d,τ
j Dd,τ

j ]

Let us start with A4’s first term, E[ε2jD
d′,τ ′

j Dd,τ
j ]. Note first that if d = d′,

we have to have τ 6= τ ′, otherwise the term would be on the diagonal. As
a consequence, with d = d′, we can have only two configurations for which
Dd′,τ ′

j Dd,τ
j = 1, and they both correspond to a baseline observation (Tj = d− 1)

either for the control group (Dj = ∞) or for the treated group (Dj = d). In
that case, we thus have:

E[ε2jD
d′,τ ′

j Dd,τ
j ] =

(
V[Y 0

i,d−1|Di =∞](1− pd,τ,d
′,τ ′

D )

+V[Y 0
i,d−1|Di = d]pd,τ,d

′,τ ′

D

)
pd,τ,d

′,τ ′

d−1 pd,τ,d
′,τ ′ ,

with pd,τ,d
′,τ ′

D the proportion of treated individuals in the group such as
Dd′,τ ′

j Dd,τ
j = 1 and pd,τ,d

′,τ ′

d−1 is the proportion of observations observed in period
d−1 among the observations such as Dd′,τ ′

j Dd,τ
j = 1 and pd,τ,d′,τ ′ the proportion

of observations such as Dd′,τ ′

j Dd,τ
j = 1.

When d 6= d′, we have three possible cases: d − 1 = d′ + τ ′, d′ − 1 = d + τ or
d′ + τ ′ = d+ τ . Because the treated groups are different in that case, the only
possible correspondence in these cases is due to the control group, with the After
period for one treated group being the Before period for another treated group
or the After periods being the same for both groups. If d− 1 = d′ + τ ′, we have:
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E[ε2jD
d′,τ ′

j Dd,τ
j ] = V[Y 0

i,d−1|Di =∞](1− pd,τ,d
′,τ ′

D )pd,τ,d
′,τ ′

d−1 pd,τ,d
′,τ ′ ,

where pd,τ,d
′,τ ′

d−1 is the proportion of observations observed in period d− 1 among
the observations such as Dd′,τ ′

j Dd,τ
j = 1.

If d′ − 1 = d+ τ , we have:

E[ε2jD
d′,τ ′

j Dd,τ
j ] = V[Y 0

i,d′−1|Di =∞](1− pd,τ,d
′,τ ′

D )pd,τ,d
′,τ ′

d′−1 pd,τ,d
′,τ ′ .

Finally, if d′ + τ ′ = d+ τ , we have:

E[ε2jD
d′,τ ′

j Dd,τ
j ] = V[Y 0

i,d+τ |Di =∞](1− pd,τ,d
′,τ ′

D )pd,τ,d
′,τ ′

d+τ pd,τ,d
′,τ ′ .

Let us now look at the next term: E[ε2jDd′

j D
d′,τ ′

j Dd,τ
j ]. Here, there is only one

case that yields a non zero term, when d = d′ (all the other configurations involve
only the untreated group and thus have Dd′

j = 0). In that case, we have:

E[ε2jDd′

j D
d′,τ ′

j Dd,τ
j ] = V[Y 0

i,d′−1|Di = d′]pd,τ,d
′,τ ′

D pd,τ,d
′,τ ′

d′−1 pd,τ,d
′,τ ′ .

Let us now look at the next term: E[ε2jT
d′,τ ′

j Dd′,τ ′

j Dd,τ
j ]. Here, there are two

cases that yield a non zero term, when d−1 = d′+τ ′ and when d′+τ ′ = d+τ (all
the other configurations involve only the Before period and thus have T d

′,τ ′

j = 0).
In both case, we have:

E[ε2jT
d′,τ ′

j Dd′,τ ′

j Dd,τ
j ] = V[Y 0

i,d′+τ ′ |Di =∞](1− pd,τ,d
′,τ ′

D )pd,τ,d
′,τ ′

d′+τ ′ pd,τ,d
′,τ ′ .

Let us now look at the next term: E[ε2jDd′

j T
d′,τ ′

j Dd′,τ ′

j Dd,τ
j ]. This term is equal

to zero since there is no treated observation observed in a post-treatment period
such that Dd′,τ ′

j Dd,τ
j = 1.

Let us now move on to B4. For E[ε2jD
d′,τ ′

j Dd
jD

d,τ
j ] to be non zero, we have to

have that d = d′ (otherwise, Dd
j = 0). The only corresponding nonzero case

corresponds to a baseline observation for the treated group:

E[ε2jD
d′,τ ′

j Dd
jD

d,τ
j ] = V[Y 0

i,d−1|Di = d]pd,τ,d
′,τ ′

D pd,τ,d
′,τ ′

d−1 pd,τ,d
′,τ ′ .
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The next term (E[ε2jDd′

j D
d′,τ ′

j Dd
jD

d,τ
j ]) is the same since, with d = d′, Dd

j = Dd′

j .
The last two terms of B4 are null everywhere. This is because it can only
be that d = d′ (since Dd

j = 1) and it cannot be a baseline observation (since
T d,τ

′

j = 1). Since treated observations appear only once for each d, τ 6= τ ′ ⇒
E[ε2jT

d′,τ ′

j Dd′,τ ′

j Dd
jD

d,τ
j ] = 0.

Let us now move on to C4. For the first term E[ε2jD
d′,τ ′

j T d,τj Dd,τ
j ], we cannot

have nonzero terms when d = d′, since this case involves only baseline period
variances and this contradicts T d,τj = 1, and thus the term is null in that case.
The only possible nonzero cases involve d′− 1 = d+ τ or d′+ τ ′ = d+ τ . In that
case, we have:

E[ε2jD
d′,τ ′

j T d,τj Dd,τ
j ] = V[Y 0

i,d+τ |Di =∞](1− pd,τ,d
′,τ ′

D )pd,τ,d
′,τ ′

d+τ pd,τ,d
′,τ ′ .

The next term in C4 is zero everywhere since it involves the same term as above
plus the additional requirement that Dd′

j = 1. Since this entails that observations
have to belong to a treatment group, and the previous term only includes terms
from the control group, this term has to be zero everywhere.

The term E[ε2jT
d′,τ ′

j Dd′,τ ′

j T d,τj Dd,τ
j ] is non zero only when d′ + τ ′ = d+ τ (it is

the same as the first term in C4 with the added constraint that T d
′,τ ′

j = 1). We
thus have:

E[ε2jT
d′,τ ′

j Dd′,τ ′

j T d,τj Dd,τ
j ] = V[Y 0

i,d+τ |Di =∞](1− pd,τ,d
′,τ ′

D )pd,τ,d
′,τ ′

d+τ pd,τ,d
′,τ ′ .

The last term in C4 everywhere since it is a subset of the second term, which is
already zero.

Finally, all the terms in D4 are equal to zero. This is because T d,τj Dd
j = 1

implies that we cannot have d = d′ (because the only nonzero terms would then
be the ones in the baseline period, which contradicts the fact that T d,τj = 1).
The remaining potential nonzero configurations only concern the control group,
which runs counter Dd

j = 1. Hence the result.

Collecting terms, we now have, when d = d′:

A4 = V[Y 0
i,d−1|Di =∞](1− pd,τ,d

′,τ ′

D )pd,τ,d
′,τ ′

d−1 pd,τ,d
′,τ ′

+ V[Y 0
i,d−1|Di = d]pd,τ,d

′,τ ′

D pd,τ,d
′,τ ′

d−1 pd,τ,d
′,τ ′(1− 1

pd
′,τ ′

D

)

B4 = V[Y 0
i,d−1|Di = d]pd,τ,d

′,τ ′

D pd,τ,d
′,τ ′

d−1 pd,τ,d
′,τ ′(1− 1

pd
′,τ ′

D

)

C4 = 0
D4 = 0,
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and thus:

Cov(β̂SAd,τ , β̂SAd′,τ ′) =
pd,τ,d

′,τ ′pd,τ,d
′,τ ′

d−1
pd,τpd′,τ ′

(
V[Y 0

i,d−1|Di =∞](1− pd,τ,d
′,τ ′

D )
(1− pd,τA )(1− pd′,τ ′A )(1− pd,τD )(1− pd′,τ ′D )

+
V[Y 0

i,d−1|Di = d]pd,τ,d
′,τ ′

D

(1− pd,τA )(1− pd′,τ ′A )pd,τD pd
′,τ ′

D

)
.

Alternatively, when d+ τ = d′ + τ ′, we have:

A4 = V[Y 0
i,d+τ |Di =∞](1− pd,τ,d

′,τ ′

D )pd,τ,d
′,τ ′

d+τ pd,τ,d
′,τ ′(1− 1

pd
′,τ ′

A

)

B4 = 0

C4 = V[Y 0
i,d+τ |Di =∞](1− pd,τ,d

′,τ ′

D )pd,τ,d
′,τ ′

d+τ pd,τ,d
′,τ ′(1− 1

pd
′,τ ′

A

)

D4 = 0

and thus:

Cov(β̂SAd,τ , β̂SAd′,τ ′) =
pd,τ,d

′,τ ′pd,τ,d
′,τ ′

d+τ V[Y 0
i,d+τ |Di =∞](1− pd,τ,d

′,τ ′

D )
pd,τpd′,τ ′pd,τA pd

′,τ ′

A (1− pd,τD )(1− pd′,τ ′D )

Finally, when d− 1 = d′ + τ ′, we have:

A4 = V[Y 0
i,d−1|Di =∞](1− pd,τ,d

′,τ ′

D )pd,τ,d
′,τ ′

d−1 pd,τ,d
′,τ ′(1− 1

pd
′,τ ′

A

)

B4 = 0
C4 = 0
D4 = 0

and thus:

Cov(β̂SAd,τ , β̂SAd′,τ ′) = −
pd,τ,d

′,τ ′pd,τ,d
′,τ ′

d−1 V[Y 0
i,d−1|Di =∞](1− pd,τ,d

′,τ ′

D )
pd,τpd′,τ ′(1− pd,τA )pd′,τ ′A (1− pd,τD )(1− pd′,τ ′D )

.

And when d′ − 1 = d+ τ , we have:
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A4 = V[Y 0
i,d′−1|Di =∞](1− pd,τ,d

′,τ ′

D )pd,τ,d
′,τ ′

d′−1 pd,τ,d
′,τ ′

B4 = 0

C4 = V[Y 0
i,d′−1|Di =∞](1− pd,τ,d

′,τ ′

D )pd,τ,d
′,τ ′

d′−1 pd,τ,d
′,τ ′

D4 = 0

and thus:

Cov(β̂SAd,τ , β̂SAd′,τ ′) = −
pd,τ,d

′,τ ′pd,τ,d
′,τ ′

d′−1 V[Y 0
i,d′−1|Di =∞](1− pd,τ,d

′,τ ′

D )
pd,τpd′,τ ′pd,τA (1− pd′,τ ′A )(1− pd,τD )(1− pd′,τ ′D )

This proves the result.

A.3.7 Proof of Theorem 4.20
The proof follows closely that of Theorem 4.19, except that our stacked model
is ∆Y = ∆XΘFD + εFD, as introduced in the proof of 4.15. Using the be-
ginning of the proof of Lemma A.4, we know that:

√
N(Θ̂FD − ΘFD) =

N(∆X ′∆X)−1
√
N
N ∆X ′εFD. Using Slutsky’s Theorem, we know that we can

study both terms separately (see the same proof of Lemma A.4).

Let us start with N(∆X ′∆X)−1. Let’s denote Nd,∞ the number of observations
that are such that Di = d or Di =∞ and pd,∞ = plimNd,∞

N . Let’s also denote
pd,∞D = Pr(Di = d|Di = d ∪Di =∞). Using the same reasoning as in the proof
of Theorem 4.19, and using the proof of Theorem 2.5, we can show that:

σd,τ∆X∆X−1 = plimN(∆X ′∆X)−1
d,τ = 1

pd,∞pd,∞D (1− pd,∞D )

(
pd,∞D −pd,∞D
−pd,∞D 1

)

with N(∆X ′∆X)−1
d,τ the block of the N(∆X ′∆X)−1 matrix that is related to

the estimation of β̂SAd,τ and using the fact that the inverse of a block diagonal
matrix is the blog diagonal matrix of the inverses of each block. The proof then
follows the line of the proof of Theorem 2.5, replacing Yi by Yi,d+τ −Yi,d−1. This
proves the result.

A.3.8 Proof of Theorem 4.22

https://en.wikipedia.org/wiki/Block_matrix
https://en.wikipedia.org/wiki/Block_matrix
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